{"title":"经 200 次冻融循环破坏的水工混凝土的自然自愈研究","authors":"Zepeng Li, Yaoying Huang, Weitian Cui, Yuchen Fu, Haidong Wei, Jin Yu","doi":"10.1016/j.dibe.2024.100470","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the recovery effect of natural self-healing of freeze-thaw damage of cementitious material-poor hydraulic concrete, we carried out a natural self-healing test for hydraulic concrete damaged by up to 200 rapid freeze-thaw cycles. The self-healing effect of macro-mechanical properties of hydraulic concrete damaged by freeze-thaw cycles was quantitatively characterized by the recovery rate of the specimens which underwent different numbers of freeze-thaw cycles then continued the standard curing to 28 days. Next, the microscopic properties of damaged hydraulic concrete after self-healing were further investigated by combining XRD, SEM and nitrogen adsorption tests. Finally, a prediction model of the recovery rate of macro-mechanical properties was established by using the microscopic pore test results. The results showed that, when the hydraulic concrete undergoes the damage of different freeze-thaw cycles and continues to standard curing for 28 days, the concrete specimens manifest natural self-healing to some extent even if damaged by up to 200 freeze-thaw cycles.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"18 ","pages":"Article 100470"},"PeriodicalIF":6.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001510/pdfft?md5=452665469e2bbdbe47bfbf3219ba9413&pid=1-s2.0-S2666165924001510-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study of natural self-healing of hydraulic concrete damaged by up to 200 freeze-thaw cycles\",\"authors\":\"Zepeng Li, Yaoying Huang, Weitian Cui, Yuchen Fu, Haidong Wei, Jin Yu\",\"doi\":\"10.1016/j.dibe.2024.100470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate the recovery effect of natural self-healing of freeze-thaw damage of cementitious material-poor hydraulic concrete, we carried out a natural self-healing test for hydraulic concrete damaged by up to 200 rapid freeze-thaw cycles. The self-healing effect of macro-mechanical properties of hydraulic concrete damaged by freeze-thaw cycles was quantitatively characterized by the recovery rate of the specimens which underwent different numbers of freeze-thaw cycles then continued the standard curing to 28 days. Next, the microscopic properties of damaged hydraulic concrete after self-healing were further investigated by combining XRD, SEM and nitrogen adsorption tests. Finally, a prediction model of the recovery rate of macro-mechanical properties was established by using the microscopic pore test results. The results showed that, when the hydraulic concrete undergoes the damage of different freeze-thaw cycles and continues to standard curing for 28 days, the concrete specimens manifest natural self-healing to some extent even if damaged by up to 200 freeze-thaw cycles.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"18 \",\"pages\":\"Article 100470\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001510/pdfft?md5=452665469e2bbdbe47bfbf3219ba9413&pid=1-s2.0-S2666165924001510-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001510\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study of natural self-healing of hydraulic concrete damaged by up to 200 freeze-thaw cycles
To investigate the recovery effect of natural self-healing of freeze-thaw damage of cementitious material-poor hydraulic concrete, we carried out a natural self-healing test for hydraulic concrete damaged by up to 200 rapid freeze-thaw cycles. The self-healing effect of macro-mechanical properties of hydraulic concrete damaged by freeze-thaw cycles was quantitatively characterized by the recovery rate of the specimens which underwent different numbers of freeze-thaw cycles then continued the standard curing to 28 days. Next, the microscopic properties of damaged hydraulic concrete after self-healing were further investigated by combining XRD, SEM and nitrogen adsorption tests. Finally, a prediction model of the recovery rate of macro-mechanical properties was established by using the microscopic pore test results. The results showed that, when the hydraulic concrete undergoes the damage of different freeze-thaw cycles and continues to standard curing for 28 days, the concrete specimens manifest natural self-healing to some extent even if damaged by up to 200 freeze-thaw cycles.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.