Min Diao , Yunkai Tao , Qian Liu , Lu Huang , Hao Li , Xuemei Lin
{"title":"Rac1 促进脂多糖诱导的炎症反应和小鼠子宫平滑肌细胞中收缩相关蛋白 (CAP) 的表达","authors":"Min Diao , Yunkai Tao , Qian Liu , Lu Huang , Hao Li , Xuemei Lin","doi":"10.1016/j.repbio.2024.100896","DOIUrl":null,"url":null,"abstract":"<div><p>Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1′s regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium–calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RT<img>PCR.</p><p>LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rac1 promotes the lipopolysaccharide-induced inflammatory response and contraction-associated proteins (CAPs) expression in mouse uterine smooth muscle cells\",\"authors\":\"Min Diao , Yunkai Tao , Qian Liu , Lu Huang , Hao Li , Xuemei Lin\",\"doi\":\"10.1016/j.repbio.2024.100896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1′s regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium–calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RT<img>PCR.</p><p>LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642431X24000421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Rac1 promotes the lipopolysaccharide-induced inflammatory response and contraction-associated proteins (CAPs) expression in mouse uterine smooth muscle cells
Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1′s regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium–calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RTPCR.
LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.