Soumya Samanta , Gayatri Kulkarni , P. Murugavel , P. Suneetha , Thara V. Prabha
{"title":"气溶胶对印度半岛上空中尺度云团生命周期的影响:基于分区的云微观物理方案的数值研究","authors":"Soumya Samanta , Gayatri Kulkarni , P. Murugavel , P. Suneetha , Thara V. Prabha","doi":"10.1016/j.jastp.2024.106265","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of aerosols (i.e., CCN) on the lifecycle of a well-documented mesoscale cloud cluster (CC) over the Indian peninsula are investigated in this study. The WRF model coupled with a sophisticated spectral bin microphysics scheme is employed to simulate the observed cloud system under various CCN scenarios. The CCN sensitivity experiments were carried out using three different background CCN concentrations (250, 1000, and 3000 cm<sup>−3</sup>). The prevailing environment featured a relatively dry mid-level. The introduction of more aerosols weakened the convection and moistened the upper troposphere in the initiation and mature phases. The major impacts of the enhanced aerosols include the dissipation of shallow clouds, a decrease in the number of convective cells and their overall coverage, enhanced convective organization in the early phase(s) of the lifecycle, enhancement of the cloud-free area, etc. The key microphysical changes due to enhanced aerosols are the increase in cloud liquid water, presence of numerous smaller cloud droplets, enhancement of condensation and evaporation, formation of smaller ice crystals, reduced snow mass and reduction in the aggregation process, high graupel mass and number and a reduction in graupel size, fewer raindrops with slight enhancement in raindrop size, etc. Cloud growth is significantly limited in the high aerosol scenarios due to large evaporation favored by a relatively dry environment and no invigoration effect is noted. A significant reduction in the rainfall (and associated rainfall-type) from isolated convective cores is noted due to high aerosols, especially in the initiation and mature phases. The eventual impact on the surface precipitation is a decrease in overall rainfall in the enhanced aerosol scenarios, with suppression of heavy rain. The study indicates that in a dry environment, the microphysical changes in various CCN scenarios cumulatively lead to macrophysical changes, which are found to be the primary controller of the overall surface rainfall associated with the CC.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"260 ","pages":"Article 106265"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of aerosols on the lifecycle of a mesoscale cloud cluster over the Indian peninsula: A numerical study with a bin-based cloud microphysics scheme\",\"authors\":\"Soumya Samanta , Gayatri Kulkarni , P. Murugavel , P. Suneetha , Thara V. Prabha\",\"doi\":\"10.1016/j.jastp.2024.106265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of aerosols (i.e., CCN) on the lifecycle of a well-documented mesoscale cloud cluster (CC) over the Indian peninsula are investigated in this study. The WRF model coupled with a sophisticated spectral bin microphysics scheme is employed to simulate the observed cloud system under various CCN scenarios. The CCN sensitivity experiments were carried out using three different background CCN concentrations (250, 1000, and 3000 cm<sup>−3</sup>). The prevailing environment featured a relatively dry mid-level. The introduction of more aerosols weakened the convection and moistened the upper troposphere in the initiation and mature phases. The major impacts of the enhanced aerosols include the dissipation of shallow clouds, a decrease in the number of convective cells and their overall coverage, enhanced convective organization in the early phase(s) of the lifecycle, enhancement of the cloud-free area, etc. The key microphysical changes due to enhanced aerosols are the increase in cloud liquid water, presence of numerous smaller cloud droplets, enhancement of condensation and evaporation, formation of smaller ice crystals, reduced snow mass and reduction in the aggregation process, high graupel mass and number and a reduction in graupel size, fewer raindrops with slight enhancement in raindrop size, etc. Cloud growth is significantly limited in the high aerosol scenarios due to large evaporation favored by a relatively dry environment and no invigoration effect is noted. A significant reduction in the rainfall (and associated rainfall-type) from isolated convective cores is noted due to high aerosols, especially in the initiation and mature phases. The eventual impact on the surface precipitation is a decrease in overall rainfall in the enhanced aerosol scenarios, with suppression of heavy rain. The study indicates that in a dry environment, the microphysical changes in various CCN scenarios cumulatively lead to macrophysical changes, which are found to be the primary controller of the overall surface rainfall associated with the CC.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"260 \",\"pages\":\"Article 106265\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624000932\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000932","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Effects of aerosols on the lifecycle of a mesoscale cloud cluster over the Indian peninsula: A numerical study with a bin-based cloud microphysics scheme
The effects of aerosols (i.e., CCN) on the lifecycle of a well-documented mesoscale cloud cluster (CC) over the Indian peninsula are investigated in this study. The WRF model coupled with a sophisticated spectral bin microphysics scheme is employed to simulate the observed cloud system under various CCN scenarios. The CCN sensitivity experiments were carried out using three different background CCN concentrations (250, 1000, and 3000 cm−3). The prevailing environment featured a relatively dry mid-level. The introduction of more aerosols weakened the convection and moistened the upper troposphere in the initiation and mature phases. The major impacts of the enhanced aerosols include the dissipation of shallow clouds, a decrease in the number of convective cells and their overall coverage, enhanced convective organization in the early phase(s) of the lifecycle, enhancement of the cloud-free area, etc. The key microphysical changes due to enhanced aerosols are the increase in cloud liquid water, presence of numerous smaller cloud droplets, enhancement of condensation and evaporation, formation of smaller ice crystals, reduced snow mass and reduction in the aggregation process, high graupel mass and number and a reduction in graupel size, fewer raindrops with slight enhancement in raindrop size, etc. Cloud growth is significantly limited in the high aerosol scenarios due to large evaporation favored by a relatively dry environment and no invigoration effect is noted. A significant reduction in the rainfall (and associated rainfall-type) from isolated convective cores is noted due to high aerosols, especially in the initiation and mature phases. The eventual impact on the surface precipitation is a decrease in overall rainfall in the enhanced aerosol scenarios, with suppression of heavy rain. The study indicates that in a dry environment, the microphysical changes in various CCN scenarios cumulatively lead to macrophysical changes, which are found to be the primary controller of the overall surface rainfall associated with the CC.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.