{"title":"c=12 的模块化维拉索罗顶点算子代数","authors":"Chongying Dong , Ching Hung Lam , Li Ren","doi":"10.1016/j.jpaa.2024.107736","DOIUrl":null,"url":null,"abstract":"<div><p>Using a <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>-form of Virasoro vertex operator algebra <span><math><mi>L</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></math></span> with central charge <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we obtain a modular vertex operator algebra over any field <span><math><mi>F</mi></math></span> of finite characteristic different from 2. We determine the generators and classify the irreducible modules for this vertex operator algebra.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Virasoro vertex operator algebras with c=12\",\"authors\":\"Chongying Dong , Ching Hung Lam , Li Ren\",\"doi\":\"10.1016/j.jpaa.2024.107736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using a <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>-form of Virasoro vertex operator algebra <span><math><mi>L</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></math></span> with central charge <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we obtain a modular vertex operator algebra over any field <span><math><mi>F</mi></math></span> of finite characteristic different from 2. We determine the generators and classify the irreducible modules for this vertex operator algebra.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modular Virasoro vertex operator algebras with c=12
Using a -form of Virasoro vertex operator algebra with central charge , we obtain a modular vertex operator algebra over any field of finite characteristic different from 2. We determine the generators and classify the irreducible modules for this vertex operator algebra.