{"title":"模式形成的反应-扩散方程中,从微不足道的解中产生非微不足道的解。","authors":"Xinyue Evelyn Zhao , Wenrui Hao","doi":"10.1016/j.mbs.2024.109222","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models: the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of non-trivial solutions from trivial solutions in reaction–diffusion equations for pattern formation\",\"authors\":\"Xinyue Evelyn Zhao , Wenrui Hao\",\"doi\":\"10.1016/j.mbs.2024.109222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models: the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000828\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergence of non-trivial solutions from trivial solutions in reaction–diffusion equations for pattern formation
Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models: the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.