Johannes Weisensee, Otmar M Ringhofer, Achim Langenbucher
{"title":"基于残余屈光度预测假性白内障人群的视力","authors":"Johannes Weisensee, Otmar M Ringhofer, Achim Langenbucher","doi":"10.1080/02713683.2024.2359981","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of the study was to design a simple, handy prediction for the effect of spherical and cylindrical refractive error on the visual acuity degradation at different distances and validate this model on a clinical dataset.</p><p><strong>Methods: </strong>This study examined 70 eyes from 35 patients' post-cataract surgery with aberration-free intraocular lenses. Biometric and corneal data were analysed, and subjective refraction and visual acuity were evaluated by two experienced optometrists. The study computed the spherical equivalent (SEQ), and defocus equivalent via vector addition (DEQ vec), as the sum of absolute values (DEQ abs). Predictive models were developed using univariate regression, with confidence intervals (BCa 95%) calculated through non-parametric bootstrapping (10,000 cycles).</p><p><strong>Results: </strong>Various calculated equivalents included -0.44 D for spherical equivalent (SEQ), 0.70 D for defocus equivalent based on vector calculation (DEQ vec), and 0.89 D for defocus equivalent based on absolute values (DEQ abs). Uncorrected and corrected visual acuity averaged 0.07 logMAR and -0.04 logMAR, respectively. The absolute defocus equivalent (DEQ abs) exhibited the smallest confidence interval (BCa 95%) at 0.07.</p><p><strong>Conclusion: </strong>The defocus equivalent based on the addition of absolute values (DEQ abs) emerged as the most practical predictor for the described applications. Notably, it offers the advantage of easy calculability through a simple equation: VA loss = DEQ abs ⋅ 0.23. In 95% of cases, this predicted loss would have an accuracy of ±0.03 lines.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Visual Acuity in Pseudophakic Cataract Population Based on Residual Refraction.\",\"authors\":\"Johannes Weisensee, Otmar M Ringhofer, Achim Langenbucher\",\"doi\":\"10.1080/02713683.2024.2359981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of the study was to design a simple, handy prediction for the effect of spherical and cylindrical refractive error on the visual acuity degradation at different distances and validate this model on a clinical dataset.</p><p><strong>Methods: </strong>This study examined 70 eyes from 35 patients' post-cataract surgery with aberration-free intraocular lenses. Biometric and corneal data were analysed, and subjective refraction and visual acuity were evaluated by two experienced optometrists. The study computed the spherical equivalent (SEQ), and defocus equivalent via vector addition (DEQ vec), as the sum of absolute values (DEQ abs). Predictive models were developed using univariate regression, with confidence intervals (BCa 95%) calculated through non-parametric bootstrapping (10,000 cycles).</p><p><strong>Results: </strong>Various calculated equivalents included -0.44 D for spherical equivalent (SEQ), 0.70 D for defocus equivalent based on vector calculation (DEQ vec), and 0.89 D for defocus equivalent based on absolute values (DEQ abs). Uncorrected and corrected visual acuity averaged 0.07 logMAR and -0.04 logMAR, respectively. The absolute defocus equivalent (DEQ abs) exhibited the smallest confidence interval (BCa 95%) at 0.07.</p><p><strong>Conclusion: </strong>The defocus equivalent based on the addition of absolute values (DEQ abs) emerged as the most practical predictor for the described applications. Notably, it offers the advantage of easy calculability through a simple equation: VA loss = DEQ abs ⋅ 0.23. In 95% of cases, this predicted loss would have an accuracy of ±0.03 lines.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02713683.2024.2359981\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2024.2359981","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of Visual Acuity in Pseudophakic Cataract Population Based on Residual Refraction.
Purpose: The purpose of the study was to design a simple, handy prediction for the effect of spherical and cylindrical refractive error on the visual acuity degradation at different distances and validate this model on a clinical dataset.
Methods: This study examined 70 eyes from 35 patients' post-cataract surgery with aberration-free intraocular lenses. Biometric and corneal data were analysed, and subjective refraction and visual acuity were evaluated by two experienced optometrists. The study computed the spherical equivalent (SEQ), and defocus equivalent via vector addition (DEQ vec), as the sum of absolute values (DEQ abs). Predictive models were developed using univariate regression, with confidence intervals (BCa 95%) calculated through non-parametric bootstrapping (10,000 cycles).
Results: Various calculated equivalents included -0.44 D for spherical equivalent (SEQ), 0.70 D for defocus equivalent based on vector calculation (DEQ vec), and 0.89 D for defocus equivalent based on absolute values (DEQ abs). Uncorrected and corrected visual acuity averaged 0.07 logMAR and -0.04 logMAR, respectively. The absolute defocus equivalent (DEQ abs) exhibited the smallest confidence interval (BCa 95%) at 0.07.
Conclusion: The defocus equivalent based on the addition of absolute values (DEQ abs) emerged as the most practical predictor for the described applications. Notably, it offers the advantage of easy calculability through a simple equation: VA loss = DEQ abs ⋅ 0.23. In 95% of cases, this predicted loss would have an accuracy of ±0.03 lines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.