Giovanna Calabrese dos Santos, Anna Luíza Damaceno Araújo, Henrique Alves de Amorim, Daniela Giraldo-Roldán, Sebastião Silvério de Sousa-Neto, Pablo Agustin Vargas, Luiz Paulo Kowalski, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Matheus Cardoso Moraes
{"title":"ResNet-50 利用组织病理学图像区分口腔内神经肿瘤的可行性研究。","authors":"Giovanna Calabrese dos Santos, Anna Luíza Damaceno Araújo, Henrique Alves de Amorim, Daniela Giraldo-Roldán, Sebastião Silvério de Sousa-Neto, Pablo Agustin Vargas, Luiz Paulo Kowalski, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Matheus Cardoso Moraes","doi":"10.1111/jop.13560","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Neural tumors are difficult to distinguish based solely on cellularity and often require immunohistochemical staining to aid in identifying the cell lineage. This article investigates the potential of a Convolutional Neural Network for the histopathological classification of the three most prevalent benign neural tumor types: neurofibroma, perineurioma, and schwannoma.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A model was developed, trained, and evaluated for classification using the ResNet-50 architecture, with a database of 30 whole-slide images stained in hematoxylin and eosin (106, 782 patches were generated from and divided among the training, validation, and testing subsets, with strategies to avoid data leakage).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The model achieved an accuracy of 70% (64% normalized), and showed satisfactory results for differentiating two of the three classes, reaching approximately 97% and 77% as true positives for neurofibroma and schwannoma classes, respectively, and only 7% for perineurioma class. The AUROC curves for neurofibroma and schwannoma classes was 0.83%, and 0.74% for perineurioma. However, the specificity rate for the perineurioma class was greater (83%) than in the other two classes (neurofibroma with 61%, and schwannoma with 60%).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This investigation demonstrated significant potential for proficient performance with a limitation regarding the perineurioma class (the limited feature variability observed contributed to a lower performance).</p>\n </section>\n </div>","PeriodicalId":16588,"journal":{"name":"Journal of Oral Pathology & Medicine","volume":"53 7","pages":"444-450"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of ResNet-50 in the distinction of intraoral neural tumors using histopathological images\",\"authors\":\"Giovanna Calabrese dos Santos, Anna Luíza Damaceno Araújo, Henrique Alves de Amorim, Daniela Giraldo-Roldán, Sebastião Silvério de Sousa-Neto, Pablo Agustin Vargas, Luiz Paulo Kowalski, Alan Roger Santos-Silva, Marcio Ajudarte Lopes, Matheus Cardoso Moraes\",\"doi\":\"10.1111/jop.13560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Neural tumors are difficult to distinguish based solely on cellularity and often require immunohistochemical staining to aid in identifying the cell lineage. This article investigates the potential of a Convolutional Neural Network for the histopathological classification of the three most prevalent benign neural tumor types: neurofibroma, perineurioma, and schwannoma.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A model was developed, trained, and evaluated for classification using the ResNet-50 architecture, with a database of 30 whole-slide images stained in hematoxylin and eosin (106, 782 patches were generated from and divided among the training, validation, and testing subsets, with strategies to avoid data leakage).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The model achieved an accuracy of 70% (64% normalized), and showed satisfactory results for differentiating two of the three classes, reaching approximately 97% and 77% as true positives for neurofibroma and schwannoma classes, respectively, and only 7% for perineurioma class. The AUROC curves for neurofibroma and schwannoma classes was 0.83%, and 0.74% for perineurioma. However, the specificity rate for the perineurioma class was greater (83%) than in the other two classes (neurofibroma with 61%, and schwannoma with 60%).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>This investigation demonstrated significant potential for proficient performance with a limitation regarding the perineurioma class (the limited feature variability observed contributed to a lower performance).</p>\\n </section>\\n </div>\",\"PeriodicalId\":16588,\"journal\":{\"name\":\"Journal of Oral Pathology & Medicine\",\"volume\":\"53 7\",\"pages\":\"444-450\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Pathology & Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jop.13560\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Pathology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jop.13560","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Feasibility study of ResNet-50 in the distinction of intraoral neural tumors using histopathological images
Background
Neural tumors are difficult to distinguish based solely on cellularity and often require immunohistochemical staining to aid in identifying the cell lineage. This article investigates the potential of a Convolutional Neural Network for the histopathological classification of the three most prevalent benign neural tumor types: neurofibroma, perineurioma, and schwannoma.
Methods
A model was developed, trained, and evaluated for classification using the ResNet-50 architecture, with a database of 30 whole-slide images stained in hematoxylin and eosin (106, 782 patches were generated from and divided among the training, validation, and testing subsets, with strategies to avoid data leakage).
Results
The model achieved an accuracy of 70% (64% normalized), and showed satisfactory results for differentiating two of the three classes, reaching approximately 97% and 77% as true positives for neurofibroma and schwannoma classes, respectively, and only 7% for perineurioma class. The AUROC curves for neurofibroma and schwannoma classes was 0.83%, and 0.74% for perineurioma. However, the specificity rate for the perineurioma class was greater (83%) than in the other two classes (neurofibroma with 61%, and schwannoma with 60%).
Conclusion
This investigation demonstrated significant potential for proficient performance with a limitation regarding the perineurioma class (the limited feature variability observed contributed to a lower performance).
期刊介绍:
The aim of the Journal of Oral Pathology & Medicine is to publish manuscripts of high scientific quality representing original clinical, diagnostic or experimental work in oral pathology and oral medicine. Papers advancing the science or practice of these disciplines will be welcomed, especially those which bring new knowledge and observations from the application of techniques within the spheres of light and electron microscopy, tissue and organ culture, immunology, histochemistry and immunocytochemistry, microbiology, genetics and biochemistry.