{"title":"热梭菌 ATCC 27405 在替代碳源上的适应性进化导致了发酵曲线的改变。","authors":"Steve R Daley, Samantha Kirby, Richard Sparling","doi":"10.1139/cjm-2024-0004","DOIUrl":null,"url":null,"abstract":"<p><p>Consolidated bioprocessing candidate, <i>Clostridium thermocellum,</i> is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. <i>C. thermocellum</i> is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing <i>C. thermocellum</i> DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H<sub>2</sub> which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive evolution of <i>Clostridium thermocellum</i> ATCC 27405 on alternate carbon sources leads to altered fermentation profiles.\",\"authors\":\"Steve R Daley, Samantha Kirby, Richard Sparling\",\"doi\":\"10.1139/cjm-2024-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consolidated bioprocessing candidate, <i>Clostridium thermocellum,</i> is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. <i>C. thermocellum</i> is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing <i>C. thermocellum</i> DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H<sub>2</sub> which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles.
Consolidated bioprocessing candidate, Clostridium thermocellum, is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. C. thermocellum is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing C. thermocellum DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H2 which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.