Chun Gui, Edward Kalkreuter, Lukas Lauterbach, Dong Yang, Ben Shen
{"title":"由二碘四炔中间体统一的烯二炔天然产物生物合成","authors":"Chun Gui, Edward Kalkreuter, Lukas Lauterbach, Dong Yang, Ben Shen","doi":"10.1038/s41589-024-01636-y","DOIUrl":null,"url":null,"abstract":"Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers. These findings establish a unified biosynthetic pathway for the enediynes, set the stage to further advance enediyne core biosynthesis and enable fundamental breakthroughs in chemistry, enzymology and translational applications of enediyne natural products. Enediyne natural products are potent antitumor antibiotics but the biosynthesis of their 1,5-diyne-3-ene core has remained enigmatic for decades. Here a diiodotetrayne is reported as a universal enediyne biosynthetic intermediate of this core, obtained upon cryptic iodination.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enediyne natural product biosynthesis unified by a diiodotetrayne intermediate\",\"authors\":\"Chun Gui, Edward Kalkreuter, Lukas Lauterbach, Dong Yang, Ben Shen\",\"doi\":\"10.1038/s41589-024-01636-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers. These findings establish a unified biosynthetic pathway for the enediynes, set the stage to further advance enediyne core biosynthesis and enable fundamental breakthroughs in chemistry, enzymology and translational applications of enediyne natural products. Enediyne natural products are potent antitumor antibiotics but the biosynthesis of their 1,5-diyne-3-ene core has remained enigmatic for decades. Here a diiodotetrayne is reported as a universal enediyne biosynthetic intermediate of this core, obtained upon cryptic iodination.\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41589-024-01636-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01636-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enediyne natural product biosynthesis unified by a diiodotetrayne intermediate
Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers. These findings establish a unified biosynthetic pathway for the enediynes, set the stage to further advance enediyne core biosynthesis and enable fundamental breakthroughs in chemistry, enzymology and translational applications of enediyne natural products. Enediyne natural products are potent antitumor antibiotics but the biosynthesis of their 1,5-diyne-3-ene core has remained enigmatic for decades. Here a diiodotetrayne is reported as a universal enediyne biosynthetic intermediate of this core, obtained upon cryptic iodination.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.