{"title":"在嗜热条件下,通过减小粒径和与棕榈油厂污水共同消化,提高空果串的高固态厌氧消化效率","authors":"Sittikorn Saelor , Prawit Kongjan , Poonsuk Prasertsan , Chonticha Mamimin , Sompong O-Thong","doi":"10.1016/j.crcon.2024.100262","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of thermophilic high solid anaerobic digestion (HS-AD) on biogas production from empty fruit bunches (EFB), focusing on the effects of total solids (TS) loading (5–40 %), particle size reduction (0.5, 3.25, and 6 cm), and co-digestion with palm oil mill effluent (POME) (10–30 % VS basis). The HS-AD at a 15–20 % TS loading has a methane yield of 103.4–105.3 mL CH<sub>4</sub>/g-VS with 24.6–25.1 % biodegradability. Particle size reduction to 0.5 cm enhanced methane yield by 54–61 % and improved hydrolysis rates by 45 % compared to the untreated EFB (6 cm) at a 15–20 % TS loading. Co-digestion of EFB with POME at a ratio of 31:1 based on VS basis led to a synergistic effect of 17.77 mL CH<sub>4</sub>/g-VS, increasing methane yield by 24–46.5 % and improving process stability, as evidenced by a 22.8–38.1 % reduction in volatile fatty acids (VFAs) accumulation. Microbial community analysis showed a 2-fold increase in the relative abundance of hydrogenotrophic methanogens (<em>Methanothermobacter</em> sp. and <em>Methanoculleus</em> sp.) during co-digestion, while the abundance of key cellulolytic bacteria (<em>Clostridium</em> sp. and <em>Fibrobacter</em> sp.) increased by 1.5-fold. The optimized HS-AD process achieved a maximum methane yield of 287.77 mL CH<sub>4</sub>/g-VS and a biodegradability of 61.2 % under thermophilic conditions, with a 20 % POME co-digestion addition (31:1 VS ratio) and 0.5 cm particle size. These findings demonstrate the potential of thermophilic HS-AD for the sustainable management of EFB and highlight the importance of process optimization and co-digestion strategies for enhanced biogas production from EFB.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 2","pages":"Article 100262"},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the efficiency of high solid anaerobic digestion of empty fruit bunches under thermophilic conditions by particle size reduction and co-digestion with palm oil mill effluent\",\"authors\":\"Sittikorn Saelor , Prawit Kongjan , Poonsuk Prasertsan , Chonticha Mamimin , Sompong O-Thong\",\"doi\":\"10.1016/j.crcon.2024.100262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of thermophilic high solid anaerobic digestion (HS-AD) on biogas production from empty fruit bunches (EFB), focusing on the effects of total solids (TS) loading (5–40 %), particle size reduction (0.5, 3.25, and 6 cm), and co-digestion with palm oil mill effluent (POME) (10–30 % VS basis). The HS-AD at a 15–20 % TS loading has a methane yield of 103.4–105.3 mL CH<sub>4</sub>/g-VS with 24.6–25.1 % biodegradability. Particle size reduction to 0.5 cm enhanced methane yield by 54–61 % and improved hydrolysis rates by 45 % compared to the untreated EFB (6 cm) at a 15–20 % TS loading. Co-digestion of EFB with POME at a ratio of 31:1 based on VS basis led to a synergistic effect of 17.77 mL CH<sub>4</sub>/g-VS, increasing methane yield by 24–46.5 % and improving process stability, as evidenced by a 22.8–38.1 % reduction in volatile fatty acids (VFAs) accumulation. Microbial community analysis showed a 2-fold increase in the relative abundance of hydrogenotrophic methanogens (<em>Methanothermobacter</em> sp. and <em>Methanoculleus</em> sp.) during co-digestion, while the abundance of key cellulolytic bacteria (<em>Clostridium</em> sp. and <em>Fibrobacter</em> sp.) increased by 1.5-fold. The optimized HS-AD process achieved a maximum methane yield of 287.77 mL CH<sub>4</sub>/g-VS and a biodegradability of 61.2 % under thermophilic conditions, with a 20 % POME co-digestion addition (31:1 VS ratio) and 0.5 cm particle size. These findings demonstrate the potential of thermophilic HS-AD for the sustainable management of EFB and highlight the importance of process optimization and co-digestion strategies for enhanced biogas production from EFB.</div></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"8 2\",\"pages\":\"Article 100262\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000516\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000516","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing the efficiency of high solid anaerobic digestion of empty fruit bunches under thermophilic conditions by particle size reduction and co-digestion with palm oil mill effluent
This study investigates the impact of thermophilic high solid anaerobic digestion (HS-AD) on biogas production from empty fruit bunches (EFB), focusing on the effects of total solids (TS) loading (5–40 %), particle size reduction (0.5, 3.25, and 6 cm), and co-digestion with palm oil mill effluent (POME) (10–30 % VS basis). The HS-AD at a 15–20 % TS loading has a methane yield of 103.4–105.3 mL CH4/g-VS with 24.6–25.1 % biodegradability. Particle size reduction to 0.5 cm enhanced methane yield by 54–61 % and improved hydrolysis rates by 45 % compared to the untreated EFB (6 cm) at a 15–20 % TS loading. Co-digestion of EFB with POME at a ratio of 31:1 based on VS basis led to a synergistic effect of 17.77 mL CH4/g-VS, increasing methane yield by 24–46.5 % and improving process stability, as evidenced by a 22.8–38.1 % reduction in volatile fatty acids (VFAs) accumulation. Microbial community analysis showed a 2-fold increase in the relative abundance of hydrogenotrophic methanogens (Methanothermobacter sp. and Methanoculleus sp.) during co-digestion, while the abundance of key cellulolytic bacteria (Clostridium sp. and Fibrobacter sp.) increased by 1.5-fold. The optimized HS-AD process achieved a maximum methane yield of 287.77 mL CH4/g-VS and a biodegradability of 61.2 % under thermophilic conditions, with a 20 % POME co-digestion addition (31:1 VS ratio) and 0.5 cm particle size. These findings demonstrate the potential of thermophilic HS-AD for the sustainable management of EFB and highlight the importance of process optimization and co-digestion strategies for enhanced biogas production from EFB.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.