F. Nieto-Guadarrama , F. Rojas , E. Cota , Jesús A. Maytorena , J. Villavicencio , D. Morachis-Galindo
{"title":"具有零场分裂的热自旋-1 系统的乌尔曼相","authors":"F. Nieto-Guadarrama , F. Rojas , E. Cota , Jesús A. Maytorena , J. Villavicencio , D. Morachis-Galindo","doi":"10.1016/j.aop.2024.169706","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Uhlmann geometric phase of a spin-1 particle subjected to zero-field splitting (ZFS) interaction, modulated by a dimensionless parameter <span><math><mi>α</mi></math></span>, under the effect of an external magnetic field with a tilting angle <span><math><mi>θ</mi></math></span>. We show that the ZFS term induces a transition in the geometrical phase behavior, characterized by a critical parameter value, <span><math><mrow><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, this phase displays two critical temperatures at <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>, similar to spin-1 systems without ZFS, but with a separation that varies with <span><math><mi>α</mi></math></span>. In contrast, for <span><math><mrow><mi>α</mi><mo>></mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, the phase exhibits two singularities at a single critical temperature but at different field orientations <span><math><mrow><mi>θ</mi><mo>≠</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>. The phase disappears for significantly large <span><math><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></math></span>, regardless of the values of the Hamiltonian parameters. This behavior clearly departs from the usual thermal Uhlmann phase observed in SU(2) systems. In addition, we analytically calculate the heat capacity, which, for <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span> and nearby values, displays two different regimes according to the sign of <span><math><mi>α</mi></math></span>. For <span><math><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></math></span>, it develops two peaks associated to the multilevel nature of the system, while for <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> only a single Schottky-anomaly like peak appears as in two level systems. Interestingly, when <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>, the temperature centroids of the Uhlmann phase and the heat capacity coincide in the region between critical temperatures for a given value of <span><math><mrow><mi>α</mi><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. Furthermore, we demonstrate that when <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>, the Uhlmann phase, a global topological property of the system, can be expressed as a function of the thermal component of the Bures metric, a local geometric property related to the heat capacity.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uhlmann phase of a thermal spin-1 system with zero field splitting\",\"authors\":\"F. Nieto-Guadarrama , F. Rojas , E. Cota , Jesús A. Maytorena , J. Villavicencio , D. Morachis-Galindo\",\"doi\":\"10.1016/j.aop.2024.169706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Uhlmann geometric phase of a spin-1 particle subjected to zero-field splitting (ZFS) interaction, modulated by a dimensionless parameter <span><math><mi>α</mi></math></span>, under the effect of an external magnetic field with a tilting angle <span><math><mi>θ</mi></math></span>. We show that the ZFS term induces a transition in the geometrical phase behavior, characterized by a critical parameter value, <span><math><mrow><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, this phase displays two critical temperatures at <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>, similar to spin-1 systems without ZFS, but with a separation that varies with <span><math><mi>α</mi></math></span>. In contrast, for <span><math><mrow><mi>α</mi><mo>></mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, the phase exhibits two singularities at a single critical temperature but at different field orientations <span><math><mrow><mi>θ</mi><mo>≠</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>. The phase disappears for significantly large <span><math><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></math></span>, regardless of the values of the Hamiltonian parameters. This behavior clearly departs from the usual thermal Uhlmann phase observed in SU(2) systems. In addition, we analytically calculate the heat capacity, which, for <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span> and nearby values, displays two different regimes according to the sign of <span><math><mi>α</mi></math></span>. For <span><math><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></math></span>, it develops two peaks associated to the multilevel nature of the system, while for <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span> only a single Schottky-anomaly like peak appears as in two level systems. Interestingly, when <span><math><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>, the temperature centroids of the Uhlmann phase and the heat capacity coincide in the region between critical temperatures for a given value of <span><math><mrow><mi>α</mi><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. Furthermore, we demonstrate that when <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>, the Uhlmann phase, a global topological property of the system, can be expressed as a function of the thermal component of the Bures metric, a local geometric property related to the heat capacity.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001143\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001143","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Uhlmann phase of a thermal spin-1 system with zero field splitting
We study the Uhlmann geometric phase of a spin-1 particle subjected to zero-field splitting (ZFS) interaction, modulated by a dimensionless parameter , under the effect of an external magnetic field with a tilting angle . We show that the ZFS term induces a transition in the geometrical phase behavior, characterized by a critical parameter value, . For , this phase displays two critical temperatures at , similar to spin-1 systems without ZFS, but with a separation that varies with . In contrast, for , the phase exhibits two singularities at a single critical temperature but at different field orientations . The phase disappears for significantly large , regardless of the values of the Hamiltonian parameters. This behavior clearly departs from the usual thermal Uhlmann phase observed in SU(2) systems. In addition, we analytically calculate the heat capacity, which, for and nearby values, displays two different regimes according to the sign of . For , it develops two peaks associated to the multilevel nature of the system, while for only a single Schottky-anomaly like peak appears as in two level systems. Interestingly, when , the temperature centroids of the Uhlmann phase and the heat capacity coincide in the region between critical temperatures for a given value of . Furthermore, we demonstrate that when , the Uhlmann phase, a global topological property of the system, can be expressed as a function of the thermal component of the Bures metric, a local geometric property related to the heat capacity.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.