启用 FFR 的 TDD NOMA 蜂窝网络中的用户性能

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
B. Luu, S.-C. Lam, N.-H. Nguyen, T.-M. Hoang
{"title":"启用 FFR 的 TDD NOMA 蜂窝网络中的用户性能","authors":"B. Luu, S.-C. Lam, N.-H. Nguyen, T.-M. Hoang","doi":"10.13164/re.2024.0312","DOIUrl":null,"url":null,"abstract":". Improving the user performance and spectrum efficiency are urgent problems for 5G and beyond 5G (B5G) cellular networks to support high Quality of Services such as enhanced mobile broadband, ultra-reliable, and low latency communications. Together with Fractional Frequency Reuse (FFR), Time Division Duplex (TDD) and Non-Orthogonal Multi-Access (NOMA) are promising the potential solutions for these problems. While the related researches focus on the single or combination two of three techniques, this paper proposes a system that combination of all three techniques to improve the data rate on the uplink sub-band. Specifically, each couple of Cell-Center User (CCU) and Cell-Edge User (CEU) in a given cell, that is defined by the FFR technique, is allowed to transmit on the same sub-band by the meaning of power-domain NOMA technique. In addition, the TDD technique allow the sharing sub-band between the user and Base Station (BS). The analytical results in Nakagami-𝑚 fading and regular path loss model shows that achievable total data rate on the shared sub-band in the proposed system model is 18.2% and 125% higher than that in the regular one with TDD and NOMA, respectively. The data rate improvement of the proposed system model proves the feasibility of co-exits of these techniques in the B5G systems.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the User in the TDD NOMA Cellular Networks Enabling FFR\",\"authors\":\"B. Luu, S.-C. Lam, N.-H. Nguyen, T.-M. Hoang\",\"doi\":\"10.13164/re.2024.0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Improving the user performance and spectrum efficiency are urgent problems for 5G and beyond 5G (B5G) cellular networks to support high Quality of Services such as enhanced mobile broadband, ultra-reliable, and low latency communications. Together with Fractional Frequency Reuse (FFR), Time Division Duplex (TDD) and Non-Orthogonal Multi-Access (NOMA) are promising the potential solutions for these problems. While the related researches focus on the single or combination two of three techniques, this paper proposes a system that combination of all three techniques to improve the data rate on the uplink sub-band. Specifically, each couple of Cell-Center User (CCU) and Cell-Edge User (CEU) in a given cell, that is defined by the FFR technique, is allowed to transmit on the same sub-band by the meaning of power-domain NOMA technique. In addition, the TDD technique allow the sharing sub-band between the user and Base Station (BS). The analytical results in Nakagami-𝑚 fading and regular path loss model shows that achievable total data rate on the shared sub-band in the proposed system model is 18.2% and 125% higher than that in the regular one with TDD and NOMA, respectively. The data rate improvement of the proposed system model proves the feasibility of co-exits of these techniques in the B5G systems.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2024.0312\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2024.0312","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

.提高用户性能和频谱效率是 5G 和超越 5G (B5G) 蜂窝网络迫切需要解决的问题,以支持高质量服务,如增强型移动宽带、超可靠和低延迟通信。时分双工(TDD)和非正交多址(NOMA)与分数频率重用(FFR)一起,有望成为解决这些问题的潜在方案。相关研究主要集中在三种技术中的单一技术或两种技术的组合,而本文提出了一种将三种技术结合起来的系统,以提高上行链路子带宽的数据传输速率。具体来说,根据功率域 NOMA 技术的含义,允许 FFR 技术定义的特定小区中的每对小区中心用户(CCU)和小区边缘用户(CEU)在同一子频段上进行传输。此外,TDD 技术允许用户和基站(BS)共享子带。在 Nakagami𝑚 fading 和常规路径损耗模型中的分析结果表明,在拟议的系统模型中,共享子频段上的可实现总数据速率比采用 TDD 和 NOMA 的常规系统分别高出 18.2% 和 125%。拟议系统模型数据速率的提高证明了这些技术在 B5G 系统中并存的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of the User in the TDD NOMA Cellular Networks Enabling FFR
. Improving the user performance and spectrum efficiency are urgent problems for 5G and beyond 5G (B5G) cellular networks to support high Quality of Services such as enhanced mobile broadband, ultra-reliable, and low latency communications. Together with Fractional Frequency Reuse (FFR), Time Division Duplex (TDD) and Non-Orthogonal Multi-Access (NOMA) are promising the potential solutions for these problems. While the related researches focus on the single or combination two of three techniques, this paper proposes a system that combination of all three techniques to improve the data rate on the uplink sub-band. Specifically, each couple of Cell-Center User (CCU) and Cell-Edge User (CEU) in a given cell, that is defined by the FFR technique, is allowed to transmit on the same sub-band by the meaning of power-domain NOMA technique. In addition, the TDD technique allow the sharing sub-band between the user and Base Station (BS). The analytical results in Nakagami-𝑚 fading and regular path loss model shows that achievable total data rate on the shared sub-band in the proposed system model is 18.2% and 125% higher than that in the regular one with TDD and NOMA, respectively. The data rate improvement of the proposed system model proves the feasibility of co-exits of these techniques in the B5G systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信