用于神经形态计算的界面屏障诱导铋基铁电记忆器件

Zhi-Long Chen, Yang Xiao, Yang-Fan Zheng, Yan-Ping Jiang, Qiu-Xiang Liu, Xin-Gui Tang
{"title":"用于神经形态计算的界面屏障诱导铋基铁电记忆器件","authors":"Zhi-Long Chen,&nbsp;Yang Xiao,&nbsp;Yang-Fan Zheng,&nbsp;Yan-Ping Jiang,&nbsp;Qiu-Xiang Liu,&nbsp;Xin-Gui Tang","doi":"10.1016/j.mtelec.2024.100105","DOIUrl":null,"url":null,"abstract":"<div><p>The development of the Internet of Things (IoT) not only facilitates our lives but also dramatically grows data. Artificial synaptic devices appear to represent an emerging physical solution compared to the existing computational architectures. Memristive devices are of great interest with their high integration and low power consumption in the field of synaptic devices. In this work, we demonstrate short-term plasticity (STP) and long-term plasticity (LTP) by regulating synaptic weights with different stimulus pulses. Moreover, the application in neuromorphic computing is further exhibited by image recognition with an accuracy of 95.2 % under the modified National Institute of Standards and Technology database. Therefore, Nd-doped Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> memristors, as emerging artificial synaptic devices, are expected to achieve breakthroughs in artificial intelligence and promote the development of neuromorphic computing and intelligent systems.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000172/pdfft?md5=5ce3ce238e78a5135c0d666469eee2eb&pid=1-s2.0-S2772949424000172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bismuth-based ferroelectric memristive device induced by interface barrier for neuromorphic computing\",\"authors\":\"Zhi-Long Chen,&nbsp;Yang Xiao,&nbsp;Yang-Fan Zheng,&nbsp;Yan-Ping Jiang,&nbsp;Qiu-Xiang Liu,&nbsp;Xin-Gui Tang\",\"doi\":\"10.1016/j.mtelec.2024.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of the Internet of Things (IoT) not only facilitates our lives but also dramatically grows data. Artificial synaptic devices appear to represent an emerging physical solution compared to the existing computational architectures. Memristive devices are of great interest with their high integration and low power consumption in the field of synaptic devices. In this work, we demonstrate short-term plasticity (STP) and long-term plasticity (LTP) by regulating synaptic weights with different stimulus pulses. Moreover, the application in neuromorphic computing is further exhibited by image recognition with an accuracy of 95.2 % under the modified National Institute of Standards and Technology database. Therefore, Nd-doped Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> memristors, as emerging artificial synaptic devices, are expected to achieve breakthroughs in artificial intelligence and promote the development of neuromorphic computing and intelligent systems.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000172/pdfft?md5=5ce3ce238e78a5135c0d666469eee2eb&pid=1-s2.0-S2772949424000172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949424000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949424000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的发展不仅方便了我们的生活,也极大地增加了数据量。与现有的计算架构相比,人工突触设备似乎代表了一种新兴的物理解决方案。在突触设备领域,具有高集成度和低功耗特点的薄膜设备备受关注。在这项工作中,我们通过不同的刺激脉冲调节突触权重,展示了短期可塑性(STP)和长期可塑性(LTP)。此外,在神经形态计算中的应用还进一步体现在图像识别上,根据修改后的美国国家标准与技术研究院数据库,图像识别的准确率达到 95.2%。因此,掺钕 Bi4Ti3O12 Memristors 作为新兴的人工突触器件,有望在人工智能领域实现突破,促进神经形态计算和智能系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bismuth-based ferroelectric memristive device induced by interface barrier for neuromorphic computing

Bismuth-based ferroelectric memristive device induced by interface barrier for neuromorphic computing

The development of the Internet of Things (IoT) not only facilitates our lives but also dramatically grows data. Artificial synaptic devices appear to represent an emerging physical solution compared to the existing computational architectures. Memristive devices are of great interest with their high integration and low power consumption in the field of synaptic devices. In this work, we demonstrate short-term plasticity (STP) and long-term plasticity (LTP) by regulating synaptic weights with different stimulus pulses. Moreover, the application in neuromorphic computing is further exhibited by image recognition with an accuracy of 95.2 % under the modified National Institute of Standards and Technology database. Therefore, Nd-doped Bi4Ti3O12 memristors, as emerging artificial synaptic devices, are expected to achieve breakthroughs in artificial intelligence and promote the development of neuromorphic computing and intelligent systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信