Shuangyan Li, Muhammad Waleed Younas, Umer Sahil Maqsood, R. M. A. Zahid
{"title":"科技提升金融市场表现:人工智能对新兴市场股价暴跌风险的影响","authors":"Shuangyan Li, Muhammad Waleed Younas, Umer Sahil Maqsood, R. M. A. Zahid","doi":"10.1108/ijoem-10-2023-1717","DOIUrl":null,"url":null,"abstract":"PurposeThe increasing awareness and adoption of technology, particularly artificial intelligence (AI), reshapes industries and daily life, fostering a proactive approach to risk management and leveraging advanced analytics, which may affect the stock price crash risk (SPCR). The main objective of the current study is to explore how AI adoption influences SPCR.Design/methodology/approachThis study employs an Ordinary Least Squares (OLS) fixed-effect regression model to explore the impact of AI on SPCR in Chinese A-share listed companies from 2010 to 2020. Further, number of robustness analysis (2SLS, PSM and Sys-GMM) and channel analysis are used to validate the findings.FindingsThe primary findings emphasize that AI adoption significantly reduces SPCR likelihood. Further, channel analysis indicates that AI adoption enhances internal control quality, contributing to a reduction in firm SPCR. Additionally, the observed relationship is notably more pronounced in non-state-owned enterprises (non-SOEs) compared to state-owned enterprises (SOEs). Similarly, this distinction is heightened in nonforeign enterprises (non-FEs) as opposed to foreign enterprises (FEs). The study finding also supports the notion that financial analysts enhance transparency, reducing the SPCR. Moreover, the study results consistently align across different statistical methodologies, including 2SLS, PSM and Sys-GMM, employed to effectively address endogeneity concerns.Research limitations/implicationsOur study stands out for its distinctive focus on the financial implications of AI adoption, particularly how it influences firm-level SPCR, an area that has been overlooked in previous research. Through the lens of information asymmetry theory, agency theory, and the economic implications of integrating AI into financial markets, our study makes a substantial contribution in mitigating SPCR.Originality/valueThis study underscores the pivotal role of AI adoption in influencing stock markets for enterprises in China. Embracing digital strategies, fostering transparency and prioritizing talent development are key for reaping substantial benefits. The study recommends regulatory bodies and service providers to promote AI adoption in strengthening financial supervision and ensure market stability, emphasizing the importance of investing in technologies and advancing talent development.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"25 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tech for stronger financial market performance: the impact of AI on stock price crash risk in emerging market\",\"authors\":\"Shuangyan Li, Muhammad Waleed Younas, Umer Sahil Maqsood, R. M. A. Zahid\",\"doi\":\"10.1108/ijoem-10-2023-1717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe increasing awareness and adoption of technology, particularly artificial intelligence (AI), reshapes industries and daily life, fostering a proactive approach to risk management and leveraging advanced analytics, which may affect the stock price crash risk (SPCR). The main objective of the current study is to explore how AI adoption influences SPCR.Design/methodology/approachThis study employs an Ordinary Least Squares (OLS) fixed-effect regression model to explore the impact of AI on SPCR in Chinese A-share listed companies from 2010 to 2020. Further, number of robustness analysis (2SLS, PSM and Sys-GMM) and channel analysis are used to validate the findings.FindingsThe primary findings emphasize that AI adoption significantly reduces SPCR likelihood. Further, channel analysis indicates that AI adoption enhances internal control quality, contributing to a reduction in firm SPCR. Additionally, the observed relationship is notably more pronounced in non-state-owned enterprises (non-SOEs) compared to state-owned enterprises (SOEs). Similarly, this distinction is heightened in nonforeign enterprises (non-FEs) as opposed to foreign enterprises (FEs). The study finding also supports the notion that financial analysts enhance transparency, reducing the SPCR. Moreover, the study results consistently align across different statistical methodologies, including 2SLS, PSM and Sys-GMM, employed to effectively address endogeneity concerns.Research limitations/implicationsOur study stands out for its distinctive focus on the financial implications of AI adoption, particularly how it influences firm-level SPCR, an area that has been overlooked in previous research. Through the lens of information asymmetry theory, agency theory, and the economic implications of integrating AI into financial markets, our study makes a substantial contribution in mitigating SPCR.Originality/valueThis study underscores the pivotal role of AI adoption in influencing stock markets for enterprises in China. Embracing digital strategies, fostering transparency and prioritizing talent development are key for reaping substantial benefits. The study recommends regulatory bodies and service providers to promote AI adoption in strengthening financial supervision and ensure market stability, emphasizing the importance of investing in technologies and advancing talent development.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ijoem-10-2023-1717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ijoem-10-2023-1717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tech for stronger financial market performance: the impact of AI on stock price crash risk in emerging market
PurposeThe increasing awareness and adoption of technology, particularly artificial intelligence (AI), reshapes industries and daily life, fostering a proactive approach to risk management and leveraging advanced analytics, which may affect the stock price crash risk (SPCR). The main objective of the current study is to explore how AI adoption influences SPCR.Design/methodology/approachThis study employs an Ordinary Least Squares (OLS) fixed-effect regression model to explore the impact of AI on SPCR in Chinese A-share listed companies from 2010 to 2020. Further, number of robustness analysis (2SLS, PSM and Sys-GMM) and channel analysis are used to validate the findings.FindingsThe primary findings emphasize that AI adoption significantly reduces SPCR likelihood. Further, channel analysis indicates that AI adoption enhances internal control quality, contributing to a reduction in firm SPCR. Additionally, the observed relationship is notably more pronounced in non-state-owned enterprises (non-SOEs) compared to state-owned enterprises (SOEs). Similarly, this distinction is heightened in nonforeign enterprises (non-FEs) as opposed to foreign enterprises (FEs). The study finding also supports the notion that financial analysts enhance transparency, reducing the SPCR. Moreover, the study results consistently align across different statistical methodologies, including 2SLS, PSM and Sys-GMM, employed to effectively address endogeneity concerns.Research limitations/implicationsOur study stands out for its distinctive focus on the financial implications of AI adoption, particularly how it influences firm-level SPCR, an area that has been overlooked in previous research. Through the lens of information asymmetry theory, agency theory, and the economic implications of integrating AI into financial markets, our study makes a substantial contribution in mitigating SPCR.Originality/valueThis study underscores the pivotal role of AI adoption in influencing stock markets for enterprises in China. Embracing digital strategies, fostering transparency and prioritizing talent development are key for reaping substantial benefits. The study recommends regulatory bodies and service providers to promote AI adoption in strengthening financial supervision and ensure market stability, emphasizing the importance of investing in technologies and advancing talent development.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.