流体动力学中自由表面流的函数不等式和强 Lyapunov 函数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Alazard, D. Bresch
{"title":"流体动力学中自由表面流的函数不等式和强 Lyapunov 函数","authors":"T. Alazard, D. Bresch","doi":"10.4171/ifb/504","DOIUrl":null,"url":null,"abstract":"This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Functional inequalities and strong Lyapunov functionals for free surface flows in fluid dynamics\",\"authors\":\"T. Alazard, D. Bresch\",\"doi\":\"10.4171/ifb/504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/504\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

本文的灵感来自对流体动力学中描述自由表面流动的四个方程的 Lyapunov 函数的研究:Hele-Shaw 和 Mullins-Sekerka 方程及其润滑近似、Boussinesq 和薄膜方程。我们确定了新的 Lyapunov 函数,包括一些以凸方式衰减的函数(这些函数被称为强 Lyapunov 函数)。对于 Hele-Shaw 方程和 Mullins-Sekerka 方程,我们证明了自由表面高程的 $L^2$ 正态和自由表面积是 Lyapunov 函数,同时还证明了薄膜方程和 Boussinesq 方程的平行结果。证明结合了耗散率的精确等式和函数不等式。对于薄膜方程和 Boussinesq 方程,我们引入了一个具有独立意义的 Sobolev 不等式,它重温了一些已知结果,并展示了强 Lyapunov 函数。对于 Hele-Shaw 和 Mullins-Sekerka 方程,我们引入了一个控制 $L^2$ 三半空间导数正态的函数。在初始数据较小的假设下,我们证明后者也是 Hele-Shaw 方程的 Lyapunov 函数,这意味着面积函数是强 Lyapunov 函数。我们建立了耗散率的精确下限,表明这些莱普诺夫函数实际上是熵。此外还研究了其他量,如勒贝格规范或玻尔兹曼熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional inequalities and strong Lyapunov functionals for free surface flows in fluid dynamics
This paper is motivated by the study of Lyapunov functionals for four equations describing free surface flows in fluid dynamics: the Hele-Shaw and Mullins-Sekerka equations together with their lubrication approximations, the Boussinesq and thin-film equations. We identify new Lyapunov functionals, including some which decay in a convex manner (these are called strong Lyapunov functionals). For the Hele-Shaw equation and the Mullins-Sekerka equation, we prove that the $L^2$-norm of the free surface elevation and the area of the free surface are Lyapunov functionals, together with parallel results for the thin-film and Boussinesq equations. The proofs combine exact identities for the dissipation rates with functional inequalities. For the thin-film and Boussinesq equations, we introduce a Sobolev inequality of independent interest which revisits some known results and exhibits strong Lyapunov functionals. For the Hele-Shaw and Mullins-Sekerka equations, we introduce a functional which controls the $L^2$-norm of three-half spatial derivative. Under a mild smallness assumption on the initial data, we show that the latter quantity is also a Lyapunov functional for the Hele-Shaw equation, implying that the area functional is a strong Lyapunov functional. Precise lower bounds for the dissipation rates are established, showing that these Lyapunov functionals are in fact entropies. Other quantities are also studied such as Lebesgue norms or the Boltzmann's entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信