包含基本双穿孔托里的节点漫场的德恩填充

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Steven Boyer, Cameron McA. Gordon, Xingru Zhang
{"title":"包含基本双穿孔托里的节点漫场的德恩填充","authors":"Steven Boyer, Cameron McA. Gordon, Xingru Zhang","doi":"10.1090/memo/1469","DOIUrl":null,"url":null,"abstract":"<p>We show that if a hyperbolic knot manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains an essential twice-punctured torus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with boundary slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\n <mml:semantics>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and admits a filling with slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> producing a Seifert fibred space, then the distance between the slopes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\n <mml:semantics>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is less than or equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> unless <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the exterior of the figure eight knot. The result is sharp; the bound of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-filling contains no non-abelian free group. The proofs are divided into the four cases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a semi-fibre, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a fibre, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is non-separating but not a fibre, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is separating but not a semi-fibre, and we obtain refined bounds in each case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori\",\"authors\":\"Steven Boyer, Cameron McA. Gordon, Xingru Zhang\",\"doi\":\"10.1090/memo/1469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a hyperbolic knot manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains an essential twice-punctured torus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with boundary slope <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\">\\n <mml:semantics>\\n <mml:mi>β<!-- β --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and admits a filling with slope <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> producing a Seifert fibred space, then the distance between the slopes <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\">\\n <mml:semantics>\\n <mml:mi>β<!-- β --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is less than or equal to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> unless <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the exterior of the figure eight knot. The result is sharp; the bound of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-filling contains no non-abelian free group. The proofs are divided into the four cases <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a semi-fibre, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a fibre, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is non-separating but not a fibre, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is separating but not a semi-fibre, and we obtain refined bounds in each case.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果一个双曲结流形 M M 包含一个边界斜率为 β β 的本质两次穿刺环 F F,并且允许一个斜率为 α α 的填充,从而产生一个塞弗特纤维空间,那么斜率 α α 和 β β 之间的距离小于等于 5 5,除非 M M 是八字结的外部。这个结果是尖锐的;5 5 的边界可以在无限多的双曲结流形上实现。我们还确定了在α α-填充的基群不包含非阿贝尔自由基的情况下的距离界限。证明分为四种情况:F F 是半纤维、F F 是纤维、F F 是非分离的但不是纤维、F F 是分离的但不是半纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori

We show that if a hyperbolic knot manifold M M contains an essential twice-punctured torus F F with boundary slope β \beta and admits a filling with slope α \alpha producing a Seifert fibred space, then the distance between the slopes α \alpha and β \beta is less than or equal to 5 5 unless M M is the exterior of the figure eight knot. The result is sharp; the bound of 5 5 can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the α \alpha -filling contains no non-abelian free group. The proofs are divided into the four cases F F is a semi-fibre, F F is a fibre, F F is non-separating but not a fibre, and F F is separating but not a semi-fibre, and we obtain refined bounds in each case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信