{"title":"包含基本双穿孔托里的节点漫场的德恩填充","authors":"Steven Boyer, Cameron McA. Gordon, Xingru Zhang","doi":"10.1090/memo/1469","DOIUrl":null,"url":null,"abstract":"<p>We show that if a hyperbolic knot manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains an essential twice-punctured torus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with boundary slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\n <mml:semantics>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and admits a filling with slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> producing a Seifert fibred space, then the distance between the slopes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\">\n <mml:semantics>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is less than or equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> unless <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the exterior of the figure eight knot. The result is sharp; the bound of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-filling contains no non-abelian free group. The proofs are divided into the four cases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a semi-fibre, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a fibre, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is non-separating but not a fibre, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is separating but not a semi-fibre, and we obtain refined bounds in each case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori\",\"authors\":\"Steven Boyer, Cameron McA. Gordon, Xingru Zhang\",\"doi\":\"10.1090/memo/1469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a hyperbolic knot manifold <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains an essential twice-punctured torus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with boundary slope <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\">\\n <mml:semantics>\\n <mml:mi>β<!-- β --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and admits a filling with slope <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> producing a Seifert fibred space, then the distance between the slopes <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"beta\\\">\\n <mml:semantics>\\n <mml:mi>β<!-- β --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\beta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is less than or equal to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> unless <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the exterior of the figure eight knot. The result is sharp; the bound of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-filling contains no non-abelian free group. The proofs are divided into the four cases <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a semi-fibre, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a fibre, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is non-separating but not a fibre, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is separating but not a semi-fibre, and we obtain refined bounds in each case.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,如果一个双曲结流形 M M 包含一个边界斜率为 β β 的本质两次穿刺环 F F,并且允许一个斜率为 α α 的填充,从而产生一个塞弗特纤维空间,那么斜率 α α 和 β β 之间的距离小于等于 5 5,除非 M M 是八字结的外部。这个结果是尖锐的;5 5 的边界可以在无限多的双曲结流形上实现。我们还确定了在α α-填充的基群不包含非阿贝尔自由基的情况下的距离界限。证明分为四种情况:F F 是半纤维、F F 是纤维、F F 是非分离的但不是纤维、F F 是分离的但不是半纤维。
Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori
We show that if a hyperbolic knot manifold MM contains an essential twice-punctured torus FF with boundary slope β\beta and admits a filling with slope α\alpha producing a Seifert fibred space, then the distance between the slopes α\alpha and β\beta is less than or equal to 55 unless MM is the exterior of the figure eight knot. The result is sharp; the bound of 55 can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the α\alpha-filling contains no non-abelian free group. The proofs are divided into the four cases FF is a semi-fibre, FF is a fibre, FF is non-separating but not a fibre, and FF is separating but not a semi-fibre, and we obtain refined bounds in each case.