矩阵 h 向量和混合欧拉数的对数凹性

IF 2.3 1区 数学 Q1 MATHEMATICS
A. Berget, Hunter Spink, Dennis Tseng
{"title":"矩阵 h 向量和混合欧拉数的对数凹性","authors":"A. Berget, Hunter Spink, Dennis Tseng","doi":"10.1215/00127094-2023-0021","DOIUrl":null,"url":null,"abstract":"For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Log-concavity of matroid h-vectors and mixed Eulerian numbers\",\"authors\":\"A. Berget, Hunter Spink, Dennis Tseng\",\"doi\":\"10.1215/00127094-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\\\\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2023-0021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

对于任意矩阵 $M$,我们利用由格拉斯曼产生的组合周环 $A^\bullet(M)$ 中某些同义类的混合交集数来计算图特多项式 $T_M(x,y)$。利用混合霍奇-黎曼关系,我们推导出了母题复数的 h 向量的对数凹性的加强,改进了道森的一个古老猜想,阿迪拉、德纳姆和胡最近公布了该猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log-concavity of matroid h-vectors and mixed Eulerian numbers
For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信