{"title":"矩阵 h 向量和混合欧拉数的对数凹性","authors":"A. Berget, Hunter Spink, Dennis Tseng","doi":"10.1215/00127094-2023-0021","DOIUrl":null,"url":null,"abstract":"For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Log-concavity of matroid h-vectors and mixed Eulerian numbers\",\"authors\":\"A. Berget, Hunter Spink, Dennis Tseng\",\"doi\":\"10.1215/00127094-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\\\\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2023-0021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
摘要
对于任意矩阵 $M$,我们利用由格拉斯曼产生的组合周环 $A^\bullet(M)$ 中某些同义类的混合交集数来计算图特多项式 $T_M(x,y)$。利用混合霍奇-黎曼关系,我们推导出了母题复数的 h 向量的对数凹性的加强,改进了道森的一个古老猜想,阿迪拉、德纳姆和胡最近公布了该猜想的证明。
Log-concavity of matroid h-vectors and mixed Eulerian numbers
For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain tautological classes in the combinatorial Chow ring $A^\bullet(M)$ arising from Grassmannians. Using mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson whose proof was announced recently by Ardila, Denham and Huh.