{"title":"根据工作组第 132 号建议,研究用于自适应放疗的图像注册精度和轮廓传播。","authors":"Kamonchanok Archawametheekul, Chanon Puttanawarut, Sithiphong Suphaphong, Chuleeporn Jiarpinitnun, Siwaporn Sakulsingharoj, Nauljun Stansook, Suphalak Khachonkham","doi":"10.4103/jmp.jmp_168_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Image registration is a crucial component of the adaptive radiotherapy workflow. This study investigates the accuracy of the deformable image registration (DIR) and contour propagation features of SmartAdapt, an application in the Eclipse treatment planning system (TPS) version 16.1.</p><p><strong>Materials and methods: </strong>The registration accuracy was validated using the Task Group No. 132 (TG-132) virtual phantom, which features contour evaluation and landmark analysis based on the quantitative criteria recommended in the American Association of Physicists in Medicine TG-132 report. The target registration error, Dice similarity coefficient (DSC), and center of mass displacement were used as quantitative validation metrics. The performance of the contour propagation feature was evaluated using clinical datasets (head and neck, pelvis, and chest) and an additional four-dimensional computed tomography (CT) dataset from TG-132. The primary planning and the second CT images were appropriately registered and deformed. The DSC was used to find the volume overlapping between the deformed contours and the radiation oncologist (RO)-drawn contour. The clinical value of the DIR-generated structure was reviewed and scored by an experienced RO to make a qualitative assessment.</p><p><strong>Results: </strong>The registration accuracy fell within the specified tolerances. SmartAdapt exhibited a reasonably propagated contour for the chest and head-and-neck regions, with DSC values of 0.80 for organs at risk. Misregistration is frequently observed in the pelvic region, which is specified as a low-contrast region. However, 78% of structures required no modification or minor modification, demonstrating good agreement between contour comparison and the qualitative analysis.</p><p><strong>Conclusions: </strong>SmartAdapt has adequate efficiency for image registration and contour propagation for adaptive purposes in various anatomical sites. However, there should be concern about its performance in regions with low contrast and small volumes.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 1","pages":"64-72"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141753/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Investigating Image Registration Accuracy and Contour Propagation for Adaptive Radiotherapy Purposes in Line with the Task Group No. 132 Recommendation.\",\"authors\":\"Kamonchanok Archawametheekul, Chanon Puttanawarut, Sithiphong Suphaphong, Chuleeporn Jiarpinitnun, Siwaporn Sakulsingharoj, Nauljun Stansook, Suphalak Khachonkham\",\"doi\":\"10.4103/jmp.jmp_168_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Image registration is a crucial component of the adaptive radiotherapy workflow. This study investigates the accuracy of the deformable image registration (DIR) and contour propagation features of SmartAdapt, an application in the Eclipse treatment planning system (TPS) version 16.1.</p><p><strong>Materials and methods: </strong>The registration accuracy was validated using the Task Group No. 132 (TG-132) virtual phantom, which features contour evaluation and landmark analysis based on the quantitative criteria recommended in the American Association of Physicists in Medicine TG-132 report. The target registration error, Dice similarity coefficient (DSC), and center of mass displacement were used as quantitative validation metrics. The performance of the contour propagation feature was evaluated using clinical datasets (head and neck, pelvis, and chest) and an additional four-dimensional computed tomography (CT) dataset from TG-132. The primary planning and the second CT images were appropriately registered and deformed. The DSC was used to find the volume overlapping between the deformed contours and the radiation oncologist (RO)-drawn contour. The clinical value of the DIR-generated structure was reviewed and scored by an experienced RO to make a qualitative assessment.</p><p><strong>Results: </strong>The registration accuracy fell within the specified tolerances. SmartAdapt exhibited a reasonably propagated contour for the chest and head-and-neck regions, with DSC values of 0.80 for organs at risk. Misregistration is frequently observed in the pelvic region, which is specified as a low-contrast region. However, 78% of structures required no modification or minor modification, demonstrating good agreement between contour comparison and the qualitative analysis.</p><p><strong>Conclusions: </strong>SmartAdapt has adequate efficiency for image registration and contour propagation for adaptive purposes in various anatomical sites. However, there should be concern about its performance in regions with low contrast and small volumes.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 1\",\"pages\":\"64-72\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_168_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_168_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The Investigating Image Registration Accuracy and Contour Propagation for Adaptive Radiotherapy Purposes in Line with the Task Group No. 132 Recommendation.
Purpose: Image registration is a crucial component of the adaptive radiotherapy workflow. This study investigates the accuracy of the deformable image registration (DIR) and contour propagation features of SmartAdapt, an application in the Eclipse treatment planning system (TPS) version 16.1.
Materials and methods: The registration accuracy was validated using the Task Group No. 132 (TG-132) virtual phantom, which features contour evaluation and landmark analysis based on the quantitative criteria recommended in the American Association of Physicists in Medicine TG-132 report. The target registration error, Dice similarity coefficient (DSC), and center of mass displacement were used as quantitative validation metrics. The performance of the contour propagation feature was evaluated using clinical datasets (head and neck, pelvis, and chest) and an additional four-dimensional computed tomography (CT) dataset from TG-132. The primary planning and the second CT images were appropriately registered and deformed. The DSC was used to find the volume overlapping between the deformed contours and the radiation oncologist (RO)-drawn contour. The clinical value of the DIR-generated structure was reviewed and scored by an experienced RO to make a qualitative assessment.
Results: The registration accuracy fell within the specified tolerances. SmartAdapt exhibited a reasonably propagated contour for the chest and head-and-neck regions, with DSC values of 0.80 for organs at risk. Misregistration is frequently observed in the pelvic region, which is specified as a low-contrast region. However, 78% of structures required no modification or minor modification, demonstrating good agreement between contour comparison and the qualitative analysis.
Conclusions: SmartAdapt has adequate efficiency for image registration and contour propagation for adaptive purposes in various anatomical sites. However, there should be concern about its performance in regions with low contrast and small volumes.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.