Charlotte Lempp, Stefanie Arms, Christof Albert Bertram, Robert Klopfleisch, Bernd-Wolfgang Igl, Leonie Hezler, Thomas Nolte, Gabriele Pohlmeyer-Esch
{"title":"在毒理病理学中展示数字显微镜和传统显微镜一致性的最低限度方法。","authors":"Charlotte Lempp, Stefanie Arms, Christof Albert Bertram, Robert Klopfleisch, Bernd-Wolfgang Igl, Leonie Hezler, Thomas Nolte, Gabriele Pohlmeyer-Esch","doi":"10.1177/01926233241255125","DOIUrl":null,"url":null,"abstract":"<p><p>Digitalization of pathology workflows has undergone a rapid evolution and has been widely established in the diagnostic field but remains a challenge in the nonclinical safety context due to lack of regulatory guidance and validation experience for good laboratory practice (GLP) use. One means to demonstrate that digital slides are fit for purpose, that is, provide sufficient quality for pathologists to reach a diagnosis, is conduction of comparison studies, which have been published both, for veterinary and human diagnostic pathology, but not for toxicologic pathology. Here, we present an approach that uses study material from nonclinical safety studies and that allows for the statistical comparison of concordance rates for glass and digital slide evaluation while minimizing time and effort for the involved personnel. Using a benchmark study design, we demonstrate that evaluation of digital slides fits the purpose of nonclinical safety evaluation. These results add to reports of successful workflow validations and support the full adaptation of digital pathology in the regulatory field.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":" ","pages":"251-257"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Minimal Approach to Demonstrate Concordance of Digital and Conventional Microscopy in Toxicologic Pathology.\",\"authors\":\"Charlotte Lempp, Stefanie Arms, Christof Albert Bertram, Robert Klopfleisch, Bernd-Wolfgang Igl, Leonie Hezler, Thomas Nolte, Gabriele Pohlmeyer-Esch\",\"doi\":\"10.1177/01926233241255125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digitalization of pathology workflows has undergone a rapid evolution and has been widely established in the diagnostic field but remains a challenge in the nonclinical safety context due to lack of regulatory guidance and validation experience for good laboratory practice (GLP) use. One means to demonstrate that digital slides are fit for purpose, that is, provide sufficient quality for pathologists to reach a diagnosis, is conduction of comparison studies, which have been published both, for veterinary and human diagnostic pathology, but not for toxicologic pathology. Here, we present an approach that uses study material from nonclinical safety studies and that allows for the statistical comparison of concordance rates for glass and digital slide evaluation while minimizing time and effort for the involved personnel. Using a benchmark study design, we demonstrate that evaluation of digital slides fits the purpose of nonclinical safety evaluation. These results add to reports of successful workflow validations and support the full adaptation of digital pathology in the regulatory field.</p>\",\"PeriodicalId\":23113,\"journal\":{\"name\":\"Toxicologic Pathology\",\"volume\":\" \",\"pages\":\"251-257\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/01926233241255125\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233241255125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
A Minimal Approach to Demonstrate Concordance of Digital and Conventional Microscopy in Toxicologic Pathology.
Digitalization of pathology workflows has undergone a rapid evolution and has been widely established in the diagnostic field but remains a challenge in the nonclinical safety context due to lack of regulatory guidance and validation experience for good laboratory practice (GLP) use. One means to demonstrate that digital slides are fit for purpose, that is, provide sufficient quality for pathologists to reach a diagnosis, is conduction of comparison studies, which have been published both, for veterinary and human diagnostic pathology, but not for toxicologic pathology. Here, we present an approach that uses study material from nonclinical safety studies and that allows for the statistical comparison of concordance rates for glass and digital slide evaluation while minimizing time and effort for the involved personnel. Using a benchmark study design, we demonstrate that evaluation of digital slides fits the purpose of nonclinical safety evaluation. These results add to reports of successful workflow validations and support the full adaptation of digital pathology in the regulatory field.
期刊介绍:
Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.