Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins
{"title":"窄带成像支气管镜的自动病灶检测。","authors":"Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins","doi":"10.1117/1.JMI.11.3.036002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.</p><p><strong>Approach: </strong>Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.</p><p><strong>Results: </strong>Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.</p><p><strong>Conclusion: </strong>The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 3","pages":"036002"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic lesion detection for narrow-band imaging bronchoscopy.\",\"authors\":\"Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins\",\"doi\":\"10.1117/1.JMI.11.3.036002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.</p><p><strong>Approach: </strong>Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.</p><p><strong>Results: </strong>Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.</p><p><strong>Conclusion: </strong>The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 3\",\"pages\":\"036002\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.3.036002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.036002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automatic lesion detection for narrow-band imaging bronchoscopy.
Purpose: Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.
Approach: Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.
Results: Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.
Conclusion: The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.