长非编码 RNA UCA1 通过调节 PARP1 泛素化促进人骨髓间充质干细胞的软骨分化

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-08-01 DOI:10.1093/stmcls/sxae038
Tao Shu, Jiachun Li, Juyuan Gu, Liang Wu, Peng Xie, Dongfeng Zhang, Wen Li, Junming Wan, Xiaozuo Zheng
{"title":"长非编码 RNA UCA1 通过调节 PARP1 泛素化促进人骨髓间充质干细胞的软骨分化","authors":"Tao Shu, Jiachun Li, Juyuan Gu, Liang Wu, Peng Xie, Dongfeng Zhang, Wen Li, Junming Wan, Xiaozuo Zheng","doi":"10.1093/stmcls/sxae038","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"752-762"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long noncoding RNA UCA1 promotes the chondrogenic differentiation of human bone marrow mesenchymal stem cells via regulating PARP1 ubiquitination.\",\"authors\":\"Tao Shu, Jiachun Li, Juyuan Gu, Liang Wu, Peng Xie, Dongfeng Zhang, Wen Li, Junming Wan, Xiaozuo Zheng\",\"doi\":\"10.1093/stmcls/sxae038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"752-762\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxae038\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨髓间充质干细胞(BMSCs)具有向软骨细胞分化的潜力。长非编码 RNA(lncRNA)UCA1 已被证实能改善骨髓间充质干细胞(MSCs)的软骨分化。在此,我们进一步研究了这些过程的影响和潜在机制。UCA1的表达与软骨源分化呈正相关,而UCA1的敲除已被证明可减轻软骨源标记物的表达。RNA牵引试验和RNA免疫沉淀显示,UCA1可直接与PARP1蛋白结合。UCA1可通过促进USP9X介导的PARP1去泛素化来改善PARP1蛋白。这些过程刺激了 NF-κB 信号通路。此外,UCA1敲除细胞中的PARP1减少,而沉默PARP1可减弱UCA1对间充质干细胞软骨分化和信号通路激活的增强作用。总之,这些结果表明,UCA1可作为PARP1蛋白泛素化的介质,促进间充质干细胞的软骨分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long noncoding RNA UCA1 promotes the chondrogenic differentiation of human bone marrow mesenchymal stem cells via regulating PARP1 ubiquitination.

Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信