利用密度泛函理论研究 AlxCoCrFeNi(0 ≤ x ≤ 2)高熵合金的结构、电子、机械和热性能

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nabila Tabassum, Yamini Sudha Sistla, Ramesh Gupta Burela, Ankit Gupta
{"title":"利用密度泛函理论研究 AlxCoCrFeNi(0 ≤ x ≤ 2)高熵合金的结构、电子、机械和热性能","authors":"Nabila Tabassum,&nbsp;Yamini Sudha Sistla,&nbsp;Ramesh Gupta Burela,&nbsp;Ankit Gupta","doi":"10.1007/s12540-024-01709-6","DOIUrl":null,"url":null,"abstract":"<div><p>High Entropy Alloys (HEA) are new class of materials exhibiting remarkable properties owing to multiple alloying elements to form solid solution phase and high configurational entropy. The properties of HEA are greatly influenced by the composition of each metallic element. Therefore, the focus of present study is to evaluate the effect of aluminum (Al) molar ratio ‘<i>x</i>’ on the structural, electronic, mechanical, and thermal properties of Al<sub><i>x</i></sub>CoCrFeNi (<i>x</i> = 0.0, 0.1, 0.3, 0.5, 0.9, 1.0, 1.5 and 2.0) HEA using Density Functional Theory (DFT). Based on the reported literature, Face Centered Cubic (FCC) crystal form of Al<sub><i>x</i></sub>CoCrFeNi was chosen for <i>x</i> = 0.0, 0.1, 0.3, 0.5,1.0 and Body Centered Cubic (BCC) form was chosen for <i>x</i> = 0.9, 1.0, 1.5, 2.0. The Special Quasi Random Structure (SQS) models of Al<sub><i>x</i></sub>CoCrFeNi were used for the property evaluation. The phase stability of Al<sub><i>x</i></sub>CoCrFeNi HEA for all molar ratios of Al was confirmed based on thermodynamic stability criteria and atomic size difference parameter. The thermodynamic stability of Al<sub><i>x</i></sub>CoCrFeNi increased with Al molar ratio. Mechanical properties were computed for a microscopic level strain rate of ± 0.7% and were evaluated based on elastic moduli, Vickers hardness, fracture toughness, Debye temperature and acoustic wave velocity. The properties computed based on phase change from FCC to BCC at <i>x</i> &gt; 1.3 of Al<sub><i>x</i></sub>CoCrFeNi match well with available experimental and theoretical literature values. Positive Cauchy pressure, B/G &gt; 1.75 and ν &gt; 0.26 indicate that as Al concentration increases, ductility of the alloy increases. Further, the elastic moduli, hardness, and fracture toughness decrease with increase in Al concentration. The lattice thermal conductivity of the HEAs studied using DFT match well with molecular simulation-based literature values and suggest that Al<sub>1.5</sub>CoCrFeNi has lowest thermal conductivity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3349 - 3369"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, Electronic, Mechanical and Thermal Properties of AlxCoCrFeNi (0 ≤ x ≤ 2) High Entropy Alloy Using Density Functional Theory\",\"authors\":\"Nabila Tabassum,&nbsp;Yamini Sudha Sistla,&nbsp;Ramesh Gupta Burela,&nbsp;Ankit Gupta\",\"doi\":\"10.1007/s12540-024-01709-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High Entropy Alloys (HEA) are new class of materials exhibiting remarkable properties owing to multiple alloying elements to form solid solution phase and high configurational entropy. The properties of HEA are greatly influenced by the composition of each metallic element. Therefore, the focus of present study is to evaluate the effect of aluminum (Al) molar ratio ‘<i>x</i>’ on the structural, electronic, mechanical, and thermal properties of Al<sub><i>x</i></sub>CoCrFeNi (<i>x</i> = 0.0, 0.1, 0.3, 0.5, 0.9, 1.0, 1.5 and 2.0) HEA using Density Functional Theory (DFT). Based on the reported literature, Face Centered Cubic (FCC) crystal form of Al<sub><i>x</i></sub>CoCrFeNi was chosen for <i>x</i> = 0.0, 0.1, 0.3, 0.5,1.0 and Body Centered Cubic (BCC) form was chosen for <i>x</i> = 0.9, 1.0, 1.5, 2.0. The Special Quasi Random Structure (SQS) models of Al<sub><i>x</i></sub>CoCrFeNi were used for the property evaluation. The phase stability of Al<sub><i>x</i></sub>CoCrFeNi HEA for all molar ratios of Al was confirmed based on thermodynamic stability criteria and atomic size difference parameter. The thermodynamic stability of Al<sub><i>x</i></sub>CoCrFeNi increased with Al molar ratio. Mechanical properties were computed for a microscopic level strain rate of ± 0.7% and were evaluated based on elastic moduli, Vickers hardness, fracture toughness, Debye temperature and acoustic wave velocity. The properties computed based on phase change from FCC to BCC at <i>x</i> &gt; 1.3 of Al<sub><i>x</i></sub>CoCrFeNi match well with available experimental and theoretical literature values. Positive Cauchy pressure, B/G &gt; 1.75 and ν &gt; 0.26 indicate that as Al concentration increases, ductility of the alloy increases. Further, the elastic moduli, hardness, and fracture toughness decrease with increase in Al concentration. The lattice thermal conductivity of the HEAs studied using DFT match well with molecular simulation-based literature values and suggest that Al<sub>1.5</sub>CoCrFeNi has lowest thermal conductivity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"30 12\",\"pages\":\"3349 - 3369\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01709-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01709-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEA)是一类新型材料,由于多种合金元素形成固溶相和高构型熵,因而具有非凡的性能。高熵合金的特性在很大程度上受各金属元素组成的影响。因此,本研究的重点是利用密度泛函理论(DFT)评估铝(Al)摩尔比 "x "对 AlxCoCrFeNi(x = 0.0、0.1、0.3、0.5、0.9、1.0、1.5 和 2.0)HEA 的结构、电子、机械和热性能的影响。根据文献报道,在 x = 0.0、0.1、0.3、0.5、1.0 时选择了面心立方(FCC)晶体形式的 AlxCoCrFeNi,在 x = 0.9、1.0、1.5、2.0 时选择了体心立方(BCC)晶体形式的 AlxCoCrFeNi。AlxCoCrFeNi 的特殊准随机结构(SQS)模型用于性能评估。根据热力学稳定性标准和原子尺寸差参数,确认了所有铝摩尔比的 AlxCoCrFeNi HEA 的相稳定性。AlxCoCrFeNi 的热力学稳定性随铝摩尔比的增加而增加。对 ± 0.7% 的微观应变率进行了机械性能计算,并根据弹性模量、维氏硬度、断裂韧性、德拜温度和声波速度进行了评估。根据 AlxCoCrFeNi 在 x > 1.3 时从 FCC 到 BCC 的相变计算出的特性与现有的实验和理论文献值非常吻合。正的考奇压力、B/G > 1.75 和 ν > 0.26 表明,随着铝浓度的增加,合金的延展性也在增加。此外,弹性模量、硬度和断裂韧性随着铝浓度的增加而降低。利用 DFT 研究的 HEA 的晶格热导率与基于分子模拟的文献值非常吻合,表明 Al1.5CoCrFeNi 的热导率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural, Electronic, Mechanical and Thermal Properties of AlxCoCrFeNi (0 ≤ x ≤ 2) High Entropy Alloy Using Density Functional Theory

Structural, Electronic, Mechanical and Thermal Properties of AlxCoCrFeNi (0 ≤ x ≤ 2) High Entropy Alloy Using Density Functional Theory

High Entropy Alloys (HEA) are new class of materials exhibiting remarkable properties owing to multiple alloying elements to form solid solution phase and high configurational entropy. The properties of HEA are greatly influenced by the composition of each metallic element. Therefore, the focus of present study is to evaluate the effect of aluminum (Al) molar ratio ‘x’ on the structural, electronic, mechanical, and thermal properties of AlxCoCrFeNi (x = 0.0, 0.1, 0.3, 0.5, 0.9, 1.0, 1.5 and 2.0) HEA using Density Functional Theory (DFT). Based on the reported literature, Face Centered Cubic (FCC) crystal form of AlxCoCrFeNi was chosen for x = 0.0, 0.1, 0.3, 0.5,1.0 and Body Centered Cubic (BCC) form was chosen for x = 0.9, 1.0, 1.5, 2.0. The Special Quasi Random Structure (SQS) models of AlxCoCrFeNi were used for the property evaluation. The phase stability of AlxCoCrFeNi HEA for all molar ratios of Al was confirmed based on thermodynamic stability criteria and atomic size difference parameter. The thermodynamic stability of AlxCoCrFeNi increased with Al molar ratio. Mechanical properties were computed for a microscopic level strain rate of ± 0.7% and were evaluated based on elastic moduli, Vickers hardness, fracture toughness, Debye temperature and acoustic wave velocity. The properties computed based on phase change from FCC to BCC at x > 1.3 of AlxCoCrFeNi match well with available experimental and theoretical literature values. Positive Cauchy pressure, B/G > 1.75 and ν > 0.26 indicate that as Al concentration increases, ductility of the alloy increases. Further, the elastic moduli, hardness, and fracture toughness decrease with increase in Al concentration. The lattice thermal conductivity of the HEAs studied using DFT match well with molecular simulation-based literature values and suggest that Al1.5CoCrFeNi has lowest thermal conductivity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信