Chavely Gonzalez Ramirez, Sarah G. Salvador, Ridthi Kartik Rekha Patel, Sarah Clark, Noah W. Miller, Lucas M. James, Nicholas W. Ringelberg, Jeremy M. Simon, Jeffrey Bennett, David G. Amaral, Alain C. Burette, Benjamin D. Philpot
{"title":"发育中猕猴大脑中自闭症相关蛋白 UBE3A/E6AP 及其反义转录本的区域和细胞组织结构","authors":"Chavely Gonzalez Ramirez, Sarah G. Salvador, Ridthi Kartik Rekha Patel, Sarah Clark, Noah W. Miller, Lucas M. James, Nicholas W. Ringelberg, Jeremy M. Simon, Jeffrey Bennett, David G. Amaral, Alain C. Burette, Benjamin D. Philpot","doi":"10.3389/fnana.2024.1410791","DOIUrl":null,"url":null,"abstract":"Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited <jats:italic>UBE3A</jats:italic> allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited <jats:italic>UBE3A</jats:italic> allele is epigenetically silenced in neurons during development by a noncoding transcript (<jats:italic>UBE3A-ATS</jats:italic>). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function—either by gene addition or by targeting <jats:italic>UBE3A-ATS</jats:italic>—are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and <jats:italic>UBE3A-ATS</jats:italic> biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and <jats:italic>UBE3A-ATS</jats:italic> expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and <jats:italic>in situ</jats:italic> hybridization, we mapped UBE3A and <jats:italic>UBE3A-ATS</jats:italic> regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal <jats:italic>UBE3A</jats:italic> silencing in neurons—but not glial cells—in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of <jats:italic>UBE3A</jats:italic> linked to AS.","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"94 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional and cellular organization of the autism-associated protein UBE3A/E6AP and its antisense transcript in the brain of the developing rhesus monkey\",\"authors\":\"Chavely Gonzalez Ramirez, Sarah G. Salvador, Ridthi Kartik Rekha Patel, Sarah Clark, Noah W. Miller, Lucas M. James, Nicholas W. Ringelberg, Jeremy M. Simon, Jeffrey Bennett, David G. Amaral, Alain C. Burette, Benjamin D. Philpot\",\"doi\":\"10.3389/fnana.2024.1410791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited <jats:italic>UBE3A</jats:italic> allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited <jats:italic>UBE3A</jats:italic> allele is epigenetically silenced in neurons during development by a noncoding transcript (<jats:italic>UBE3A-ATS</jats:italic>). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function—either by gene addition or by targeting <jats:italic>UBE3A-ATS</jats:italic>—are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and <jats:italic>UBE3A-ATS</jats:italic> biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and <jats:italic>UBE3A-ATS</jats:italic> expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and <jats:italic>in situ</jats:italic> hybridization, we mapped UBE3A and <jats:italic>UBE3A-ATS</jats:italic> regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal <jats:italic>UBE3A</jats:italic> silencing in neurons—but not glial cells—in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of <jats:italic>UBE3A</jats:italic> linked to AS.\",\"PeriodicalId\":12572,\"journal\":{\"name\":\"Frontiers in Neuroanatomy\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnana.2024.1410791\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2024.1410791","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Regional and cellular organization of the autism-associated protein UBE3A/E6AP and its antisense transcript in the brain of the developing rhesus monkey
Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited UBE3A allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited UBE3A allele is epigenetically silenced in neurons during development by a noncoding transcript (UBE3A-ATS). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function—either by gene addition or by targeting UBE3A-ATS—are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and UBE3A-ATS biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and UBE3A-ATS expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and in situ hybridization, we mapped UBE3A and UBE3A-ATS regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal UBE3A silencing in neurons—but not glial cells—in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of UBE3A linked to AS.
期刊介绍:
Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.