硝化纤维素涂层对硝酸铵氧化剂结构和反应活性稳定化的协同效应

IF 5.1 2区 工程技术 Q1 Engineering
Amir Abdelaziz, Djalal Trache, Ahmed Fouzi Tarchoun, Hani Boukeciat, Yash Pal, Sourbh Thakur, Weiqiang Pang, Thomas M. Klapötke
{"title":"硝化纤维素涂层对硝酸铵氧化剂结构和反应活性稳定化的协同效应","authors":"Amir Abdelaziz, Djalal Trache, Ahmed Fouzi Tarchoun, Hani Boukeciat, Yash Pal, Sourbh Thakur, Weiqiang Pang, Thomas M. Klapötke","doi":"10.1016/j.dt.2024.04.017","DOIUrl":null,"url":null,"abstract":"The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate (AN) particles utilizing a microencapsulation technique, which involves solvent/non-solvent in which nitrocellulose (NC) has been employed as a coating agent. The SEM micrographs revealed distinct features of both pure AN and NC, contrasting with the irregular granular surface topography of the coated AN particles, demonstrating the adherence of NC on the AN surface. Structural analysis infrared spectroscopy (IR) demonstrated a successful association of AN and NC, with slight shifts observed in IR bands indicating interfacial interactions. Powder X-ray Diffraction (PXRD) analysis further elucidated the structural changes induced by the coating process, revealing that the NC coating altered the crystallization pattern of its pure form. Thermal analysis demonstrates distinct profiles for pure and coated AN, for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6 °C, and 36%, respectively. Furthermore, the presence of NC coating alters the intermolecular forces within the composite system, leading to a reduction in melting enthalpy of coated AN by ∼39% compared to pure AN. The thermal decomposition analysis shows a two-step thermolysis process for coated AN, with a significant increase in the released heat by about 78% accompanied by an increase in the activation barrier of NC and AN thermolysis, demonstrating a stabilized reactivity of the AN-NC particles. These findings highlight the synergistic effect of NC coating on AN particles, which contributed to a structural and reactive stabilization of both AN and NC, proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.","PeriodicalId":10986,"journal":{"name":"Defence Technology","volume":"19 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer\",\"authors\":\"Amir Abdelaziz, Djalal Trache, Ahmed Fouzi Tarchoun, Hani Boukeciat, Yash Pal, Sourbh Thakur, Weiqiang Pang, Thomas M. Klapötke\",\"doi\":\"10.1016/j.dt.2024.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate (AN) particles utilizing a microencapsulation technique, which involves solvent/non-solvent in which nitrocellulose (NC) has been employed as a coating agent. The SEM micrographs revealed distinct features of both pure AN and NC, contrasting with the irregular granular surface topography of the coated AN particles, demonstrating the adherence of NC on the AN surface. Structural analysis infrared spectroscopy (IR) demonstrated a successful association of AN and NC, with slight shifts observed in IR bands indicating interfacial interactions. Powder X-ray Diffraction (PXRD) analysis further elucidated the structural changes induced by the coating process, revealing that the NC coating altered the crystallization pattern of its pure form. Thermal analysis demonstrates distinct profiles for pure and coated AN, for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6 °C, and 36%, respectively. Furthermore, the presence of NC coating alters the intermolecular forces within the composite system, leading to a reduction in melting enthalpy of coated AN by ∼39% compared to pure AN. The thermal decomposition analysis shows a two-step thermolysis process for coated AN, with a significant increase in the released heat by about 78% accompanied by an increase in the activation barrier of NC and AN thermolysis, demonstrating a stabilized reactivity of the AN-NC particles. These findings highlight the synergistic effect of NC coating on AN particles, which contributed to a structural and reactive stabilization of both AN and NC, proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.\",\"PeriodicalId\":10986,\"journal\":{\"name\":\"Defence Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dt.2024.04.017\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dt.2024.04.017","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用微胶囊技术稳定硝酸铵(AN)颗粒的室温各向同性转变,该技术涉及溶剂/非溶剂,其中采用硝化纤维素(NC)作为涂层剂。扫描电镜显微照片显示了纯 AN 和 NC 的明显特征,与涂覆 AN 颗粒的不规则颗粒表面形貌形成鲜明对比,表明 NC 附着在 AN 表面。红外光谱(IR)结构分析表明 AN 和 NC 成功地结合在一起,观察到的红外波段有轻微偏移,表明存在界面相互作用。粉末 X 射线衍射 (PXRD) 分析进一步阐明了涂层过程引起的结构变化,显示出 NC 涂层改变了其纯形式的结晶模式。热分析显示了纯 AN 和涂层 AN 的不同曲线,其中涂层样品的室温各向同性转变温度和焓值分别提高了 6 ℃ 和降低了 36%。此外,NC 涂层的存在改变了复合体系内的分子间作用力,导致涂层 AN 的熔化焓比纯 AN 降低了 39%。热分解分析表明,包覆 AN 的热分解过程分为两步,释放的热量显著增加了约 78%,同时 NC 和 AN 的热分解活化势垒也有所提高,这表明 AN-NC 颗粒的反应活性趋于稳定。这些发现凸显了数控涂层对 AN 粒子的协同效应,有助于 AN 和数控的结构和反应稳定化,证明了数控涂层 AN 作为一种具有战略优势的氧化剂在复合固体推进剂配方中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate (AN) particles utilizing a microencapsulation technique, which involves solvent/non-solvent in which nitrocellulose (NC) has been employed as a coating agent. The SEM micrographs revealed distinct features of both pure AN and NC, contrasting with the irregular granular surface topography of the coated AN particles, demonstrating the adherence of NC on the AN surface. Structural analysis infrared spectroscopy (IR) demonstrated a successful association of AN and NC, with slight shifts observed in IR bands indicating interfacial interactions. Powder X-ray Diffraction (PXRD) analysis further elucidated the structural changes induced by the coating process, revealing that the NC coating altered the crystallization pattern of its pure form. Thermal analysis demonstrates distinct profiles for pure and coated AN, for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6 °C, and 36%, respectively. Furthermore, the presence of NC coating alters the intermolecular forces within the composite system, leading to a reduction in melting enthalpy of coated AN by ∼39% compared to pure AN. The thermal decomposition analysis shows a two-step thermolysis process for coated AN, with a significant increase in the released heat by about 78% accompanied by an increase in the activation barrier of NC and AN thermolysis, demonstrating a stabilized reactivity of the AN-NC particles. These findings highlight the synergistic effect of NC coating on AN particles, which contributed to a structural and reactive stabilization of both AN and NC, proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology
Defence Technology Engineering-Computational Mechanics
CiteScore
7.50
自引率
7.80%
发文量
1248
审稿时长
22 weeks
期刊介绍: Defence Technology, sponsored by China Ordnance Society, is published quarterly and aims to become one of the well-known comprehensive journals in the world, which reports on the breakthroughs in defence technology by building up an international academic exchange platform for the defence technology related research. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信