通过原子层沉积制备用于锌-空气电池空气电极的双功能锰-铁氧化物催化剂

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Matthew Labbe, Michael P. Clark, Dr. Ken Cadien, Dr. Douglas G. Ivey
{"title":"通过原子层沉积制备用于锌-空气电池空气电极的双功能锰-铁氧化物催化剂","authors":"Matthew Labbe,&nbsp;Michael P. Clark,&nbsp;Dr. Ken Cadien,&nbsp;Dr. Douglas G. Ivey","doi":"10.1002/batt.202400133","DOIUrl":null,"url":null,"abstract":"<p>Zinc-air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFe<sub><i>x</i></sub>O<sub><i>y</i></sub> bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe)<sub>3</sub>O<sub>4</sub> cubic spinel. The mixed oxide catalyst outperforms its individual binary MnO<sub><i>x</i></sub> or FeO<sub><i>x</i></sub> constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm<sup>−2</sup>. Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm<sup>−2</sup>. The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400133","citationCount":"0","resultStr":"{\"title\":\"Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition\",\"authors\":\"Matthew Labbe,&nbsp;Michael P. Clark,&nbsp;Dr. Ken Cadien,&nbsp;Dr. Douglas G. Ivey\",\"doi\":\"10.1002/batt.202400133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc-air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFe<sub><i>x</i></sub>O<sub><i>y</i></sub> bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe)<sub>3</sub>O<sub>4</sub> cubic spinel. The mixed oxide catalyst outperforms its individual binary MnO<sub><i>x</i></sub> or FeO<sub><i>x</i></sub> constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm<sup>−2</sup>. Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm<sup>−2</sup>. The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400133\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400133\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400133","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

锌-空气电池(ZAB)是众多储能技术之一,有助于将可再生能源并入电网。锌空气电池的一个关键发展目标是用更丰富、更廉价的材料取代空气电极上的贵金属催化剂。在这项工作中,利用原子层沉积(ALD)技术在 ZAB 空气电极上直接沉积了 MnFexOy 双功能催化剂。通过原子层沉积,可以根据催化活性调整空气电极涂层的原子成分。通过电子显微镜、光电子能谱和衍射技术进行的表征表明,新型 ALD 薄膜沉积为纳米晶(Mn,Fe)3O4 立方尖晶石。这种混合氧化物催化剂的性能优于其单独的二元氧化锰或氧化铁成分,在 20 mA cm-2 电流条件下的双功能效率为 50.7%。此外,在 10 mA cm-2 下进行 600 小时(1565 个循环)的 ZAB 循环也证明了 ALD 催化剂的长期稳定性。双功能过渡金属氧化物催化剂的效率保持率优于贵金属基准 Pt-Ru-C,在超过 1500 次循环后,效率保持率为 84.7%,而贵金属催化剂的效率保持率仅为 66.2%。ALD 技术使催化剂材料深入空气电极结构,从而改善了循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition

Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition

Zinc-air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFexOy bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe)3O4 cubic spinel. The mixed oxide catalyst outperforms its individual binary MnOx or FeOx constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm−2. Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm−2. The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信