农业土地利用建模与气候变化适应:强化学习方法

IF 3.3 2区 经济学 Q2 AGRICULTURAL ECONOMICS & POLICY
Christian Stetter, Robert Huber, Robert Finger
{"title":"农业土地利用建模与气候变化适应:强化学习方法","authors":"Christian Stetter,&nbsp;Robert Huber,&nbsp;Robert Finger","doi":"10.1002/aepp.13448","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a novel approach to integrate farmers' behavior in spatially explicit agricultural land use modeling to investigate climate change adaptation strategies. More specifically, we develop and apply a computationally efficient machine learning approach based on reinforcement learning to simulate the adoption of agroforestry practices. Using data from an economic experiment with crop farmers in Southeast Germany, our results show that a change in climate, market, and policy conditions shifts the spatial distribution of the uptake of agroforestry systems. Our modeling approach can be used to advance currently used models for ex ante policy analysis by upscaling existing knowledge about farmers behavioral characteristics and combine it with spatially explicit environmental and farm structural data. The approach presents a potential solution for researchers who aim to upscale information, potentially enriching and complementing existing land use modeling approaches.</p>","PeriodicalId":8004,"journal":{"name":"Applied Economic Perspectives and Policy","volume":"46 4","pages":"1379-1405"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aepp.13448","citationCount":"0","resultStr":"{\"title\":\"Agricultural land use modeling and climate change adaptation: A reinforcement learning approach\",\"authors\":\"Christian Stetter,&nbsp;Robert Huber,&nbsp;Robert Finger\",\"doi\":\"10.1002/aepp.13448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a novel approach to integrate farmers' behavior in spatially explicit agricultural land use modeling to investigate climate change adaptation strategies. More specifically, we develop and apply a computationally efficient machine learning approach based on reinforcement learning to simulate the adoption of agroforestry practices. Using data from an economic experiment with crop farmers in Southeast Germany, our results show that a change in climate, market, and policy conditions shifts the spatial distribution of the uptake of agroforestry systems. Our modeling approach can be used to advance currently used models for ex ante policy analysis by upscaling existing knowledge about farmers behavioral characteristics and combine it with spatially explicit environmental and farm structural data. The approach presents a potential solution for researchers who aim to upscale information, potentially enriching and complementing existing land use modeling approaches.</p>\",\"PeriodicalId\":8004,\"journal\":{\"name\":\"Applied Economic Perspectives and Policy\",\"volume\":\"46 4\",\"pages\":\"1379-1405\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aepp.13448\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Economic Perspectives and Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aepp.13448\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Economic Perspectives and Policy","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aepp.13448","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一种新方法,将农民行为纳入空间明确的农业土地利用建模中,以研究气候变化适应战略。更具体地说,我们开发并应用了一种基于强化学习的计算高效的机器学习方法来模拟农林业实践的采用。利用德国东南部农作物种植者的经济实验数据,我们的研究结果表明,气候、市场和政策条件的变化会改变农林系统吸收的空间分布。我们的建模方法可用于提升现有的农民行为特征知识,并将其与空间明确的环境和农场结构数据相结合,从而推进当前使用的事前政策分析模型。这种方法为那些旨在扩大信息规模的研究人员提供了一种潜在的解决方案,有可能丰富和补充现有的土地利用建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Agricultural land use modeling and climate change adaptation: A reinforcement learning approach

Agricultural land use modeling and climate change adaptation: A reinforcement learning approach

This paper provides a novel approach to integrate farmers' behavior in spatially explicit agricultural land use modeling to investigate climate change adaptation strategies. More specifically, we develop and apply a computationally efficient machine learning approach based on reinforcement learning to simulate the adoption of agroforestry practices. Using data from an economic experiment with crop farmers in Southeast Germany, our results show that a change in climate, market, and policy conditions shifts the spatial distribution of the uptake of agroforestry systems. Our modeling approach can be used to advance currently used models for ex ante policy analysis by upscaling existing knowledge about farmers behavioral characteristics and combine it with spatially explicit environmental and farm structural data. The approach presents a potential solution for researchers who aim to upscale information, potentially enriching and complementing existing land use modeling approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Economic Perspectives and Policy
Applied Economic Perspectives and Policy AGRICULTURAL ECONOMICS & POLICY-
CiteScore
10.70
自引率
6.90%
发文量
117
审稿时长
>12 weeks
期刊介绍: Applied Economic Perspectives and Policy provides a forum to address contemporary and emerging policy issues within an economic framework that informs the decision-making and policy-making community. AEPP welcomes submissions related to the economics of public policy themes associated with agriculture; animal, plant, and human health; energy; environment; food and consumer behavior; international development; natural hazards; natural resources; population and migration; and regional and rural development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信