{"title":"Theta 函数、特征形式的第四矩和超正问题 II","authors":"Ilya Khayutin, Paul D. Nelson, Raphael S. Steiner","doi":"10.1017/fmp.2024.9","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>f</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline1.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-normalized holomorphic newform of weight <jats:italic>k</jats:italic> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline2.png\"/> <jats:tex-math> $\\Gamma _0(N) \\backslash \\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>N</jats:italic> squarefree or, more generally, on any hyperbolic surface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline3.png\"/> <jats:tex-math> $\\Gamma \\backslash \\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> attached to an Eichler order of squarefree level in an indefinite quaternion algebra over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline4.png\"/> <jats:tex-math> $\\mathbb {Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:italic>V</jats:italic> the hyperbolic volume of said surface. We prove the sup-norm estimate <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_eqnu1.png\"/> <jats:tex-math> $$\\begin{align*}\\| \\Im(\\cdot)^{\\frac{k}{2}} f \\|_{\\infty} \\ll_{\\varepsilon} (k V)^{\\frac{1}{4}+\\varepsilon} \\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> with absolute implied constant. For a cuspidal Maaß newform <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline5.png\"/> <jats:tex-math> $\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of eigenvalue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline6.png\"/> <jats:tex-math> $\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on such a surface, we prove that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_eqnu2.png\"/> <jats:tex-math> $$\\begin{align*}\\|\\varphi \\|_{\\infty} \\ll_{\\lambda,\\varepsilon} V^{\\frac{1}{4}+\\varepsilon}. \\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We establish analogous estimates in the setting of definite quaternion algebras.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theta functions, fourth moments of eigenforms and the sup-norm problem II\",\"authors\":\"Ilya Khayutin, Paul D. Nelson, Raphael S. Steiner\",\"doi\":\"10.1017/fmp.2024.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>f</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline1.png\\\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-normalized holomorphic newform of weight <jats:italic>k</jats:italic> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline2.png\\\"/> <jats:tex-math> $\\\\Gamma _0(N) \\\\backslash \\\\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>N</jats:italic> squarefree or, more generally, on any hyperbolic surface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline3.png\\\"/> <jats:tex-math> $\\\\Gamma \\\\backslash \\\\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> attached to an Eichler order of squarefree level in an indefinite quaternion algebra over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline4.png\\\"/> <jats:tex-math> $\\\\mathbb {Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:italic>V</jats:italic> the hyperbolic volume of said surface. We prove the sup-norm estimate <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_eqnu1.png\\\"/> <jats:tex-math> $$\\\\begin{align*}\\\\| \\\\Im(\\\\cdot)^{\\\\frac{k}{2}} f \\\\|_{\\\\infty} \\\\ll_{\\\\varepsilon} (k V)^{\\\\frac{1}{4}+\\\\varepsilon} \\\\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> with absolute implied constant. For a cuspidal Maaß newform <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline5.png\\\"/> <jats:tex-math> $\\\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of eigenvalue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_inline6.png\\\"/> <jats:tex-math> $\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on such a surface, we prove that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862400009X_eqnu2.png\\\"/> <jats:tex-math> $$\\\\begin{align*}\\\\|\\\\varphi \\\\|_{\\\\infty} \\\\ll_{\\\\lambda,\\\\varepsilon} V^{\\\\frac{1}{4}+\\\\varepsilon}. \\\\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We establish analogous estimates in the setting of definite quaternion algebras.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 f 是一个在 $\Gamma _0(N) \backslash \mathbb {H}$ 上的权重为 k 的 $L^2$ 归一化全形新形式,其中 N 是无平方的,或者更广义地说,是在任何双曲面 $\Gamma \backslash \mathbb {H}$ 上的权重为 k 的新形式,该双曲面附着于一个在 $\mathbb {Q}$ 上的不定四元数代数中的无平方级的艾希勒阶。用 V 表示所述曲面的双曲体积。我们证明超规范估计 $$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty}.\(k V)^{\frac{1}{4}+\varepsilon}\end{align*}$$ 带有绝对隐含常数。对于这样一个曲面上特征值为 $\lambda $ 的尖顶 Maaß 新形态 $\varphi $,我们证明 $$\begin{align*}\|\varphi \|_{\infty}.\V^{frac{1}V^{\frac{1}{4}+\varepsilon}.\end{align*}$$ 我们在定四元数组中建立了类似的估计。
Theta functions, fourth moments of eigenforms and the sup-norm problem II
Let f be an $L^2$ -normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb {Q}$ . Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate $$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform $\varphi $ of eigenvalue $\lambda $ on such a surface, we prove that $$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.