Andreas S. Berthelsen, Martin Søndergaard, Mikko Kiljunen, Antti P. Eloranta, Torben L. Lauridsen
{"title":"富营养化湖泊恢复后鱼类的中上层生态位转移","authors":"Andreas S. Berthelsen, Martin Søndergaard, Mikko Kiljunen, Antti P. Eloranta, Torben L. Lauridsen","doi":"10.1007/s10750-024-05568-5","DOIUrl":null,"url":null,"abstract":"<p>Lake restoration by biomanipulation or phosphorus fixation has been commonly applied methods to improve the ecological status of lakes. However, the effects of lake restoration on food-web dynamics are still poorly understood, especially when biomanipulation and nutrient fixation are used simultaneously. This study investigated the combined effects of a 70% fish removal (mainly roach (<i>Rutilus rutilus</i> Linnaeus, 1758) and bream (<i>Abramis brama</i> Linnaeus, 1758) and Phoslock® treatment on fish trophic ecology in Lyngsø (area: 9.6 ha, mean depth: 2.6 m), Denmark. The lake restoration resulted in decreased nutrient levels, increased water clarity, and increased coverage of more structurally complex submerged macrophytes. Following lake restoration, significant changes in diets of the dominant fish species were observed. Stomach content analyses of roach and perch (<i>Perca fluviatilis</i> Linnaeus, 1758) revealed significantly reduced detritus utilization and increased foraging on macrophytes and macrophyte living invertebrates. Results from stable isotope mixing models indicated a shift from littoral benthic to more pelagic food resources by the dominant fish species. Our findings provide further evidence that lake restorations can lead to substantial changes in lake food webs and fish communities, thereby potentially facilitating a shift toward an ecological state resembling the pristine reference state, less influenced by anthropogenic factors.</p>","PeriodicalId":13147,"journal":{"name":"Hydrobiologia","volume":"60 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pelagic niche shift by fishes following restorations of a eutrophic lake\",\"authors\":\"Andreas S. Berthelsen, Martin Søndergaard, Mikko Kiljunen, Antti P. Eloranta, Torben L. Lauridsen\",\"doi\":\"10.1007/s10750-024-05568-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lake restoration by biomanipulation or phosphorus fixation has been commonly applied methods to improve the ecological status of lakes. However, the effects of lake restoration on food-web dynamics are still poorly understood, especially when biomanipulation and nutrient fixation are used simultaneously. This study investigated the combined effects of a 70% fish removal (mainly roach (<i>Rutilus rutilus</i> Linnaeus, 1758) and bream (<i>Abramis brama</i> Linnaeus, 1758) and Phoslock® treatment on fish trophic ecology in Lyngsø (area: 9.6 ha, mean depth: 2.6 m), Denmark. The lake restoration resulted in decreased nutrient levels, increased water clarity, and increased coverage of more structurally complex submerged macrophytes. Following lake restoration, significant changes in diets of the dominant fish species were observed. Stomach content analyses of roach and perch (<i>Perca fluviatilis</i> Linnaeus, 1758) revealed significantly reduced detritus utilization and increased foraging on macrophytes and macrophyte living invertebrates. Results from stable isotope mixing models indicated a shift from littoral benthic to more pelagic food resources by the dominant fish species. Our findings provide further evidence that lake restorations can lead to substantial changes in lake food webs and fish communities, thereby potentially facilitating a shift toward an ecological state resembling the pristine reference state, less influenced by anthropogenic factors.</p>\",\"PeriodicalId\":13147,\"journal\":{\"name\":\"Hydrobiologia\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrobiologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10750-024-05568-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrobiologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10750-024-05568-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Pelagic niche shift by fishes following restorations of a eutrophic lake
Lake restoration by biomanipulation or phosphorus fixation has been commonly applied methods to improve the ecological status of lakes. However, the effects of lake restoration on food-web dynamics are still poorly understood, especially when biomanipulation and nutrient fixation are used simultaneously. This study investigated the combined effects of a 70% fish removal (mainly roach (Rutilus rutilus Linnaeus, 1758) and bream (Abramis brama Linnaeus, 1758) and Phoslock® treatment on fish trophic ecology in Lyngsø (area: 9.6 ha, mean depth: 2.6 m), Denmark. The lake restoration resulted in decreased nutrient levels, increased water clarity, and increased coverage of more structurally complex submerged macrophytes. Following lake restoration, significant changes in diets of the dominant fish species were observed. Stomach content analyses of roach and perch (Perca fluviatilis Linnaeus, 1758) revealed significantly reduced detritus utilization and increased foraging on macrophytes and macrophyte living invertebrates. Results from stable isotope mixing models indicated a shift from littoral benthic to more pelagic food resources by the dominant fish species. Our findings provide further evidence that lake restorations can lead to substantial changes in lake food webs and fish communities, thereby potentially facilitating a shift toward an ecological state resembling the pristine reference state, less influenced by anthropogenic factors.
期刊介绍:
Hydrobiologia publishes original research, reviews and opinions regarding the biology of all aquatic environments, including the impact of human activities. We welcome molecular-, organism-, community- and ecosystem-level studies in contributions dealing with limnology and oceanography, including systematics and aquatic ecology. Hypothesis-driven experimental research is preferred, but also theoretical papers or articles with large descriptive content will be considered, provided they are made relevant to a broad hydrobiological audience. Applied aspects will be considered if firmly embedded in an ecological context.