气管细胞结构对针叶树种气体渗透性和孔隙率的影响

IF 3.1 2区 农林科学 Q1 FORESTRY
Kaiyuan Li, Chongpeng Ye, Wei Peng, Yanyan Zou, Xi Deng, Linlin Yi, Xujuan Wu
{"title":"气管细胞结构对针叶树种气体渗透性和孔隙率的影响","authors":"Kaiyuan Li,&nbsp;Chongpeng Ye,&nbsp;Wei Peng,&nbsp;Yanyan Zou,&nbsp;Xi Deng,&nbsp;Linlin Yi,&nbsp;Xujuan Wu","doi":"10.1007/s00226-024-01562-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study utilized a self-developed gas permeability–porosity integrated analyzer to examine the gas permeability and porosity of pine, cypress, and Cunninghamia conifers across different wood orientations and parts. The findings reveal that the longitudinal permeabilities of conifers are higher than the radial and tangential permeabilities by factors of 14–100 and 275–600, respectively. A consistent exponential relationship exists between longitudinal permeability and porosity, irrespective of species. In the sapwood, the tracheid dimensions are 110.5–132.1% in radius and 103.6–116.2% in length compared to heartwood. A single tracheid exhibits higher longitudinal flow resistance than those in the radial and tangential directions. The primary longitudinal flow resistance stems from the lap surface of the upper and lower tracheids series connected with pits. In radial and tangential directions, the gas flow encounters a high density of pits from a series of connected tracheids. The number of series-connected tracheids in the longitudinal direction is only 1% of those in radial and tangential directions, whereas it reaches up to 600 times for parallel connections. This leads to considerably lower total flow resistance in the longitudinal direction compared to radial and tangential directions. The measured higher longitudinal gas permeability aligns well with the model calculations and the gas microseepage is predominantly related to tracheid structure, causing permeability variations.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1181 - 1197"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of tracheid cell structure on gas permeability and porosity in conifer species\",\"authors\":\"Kaiyuan Li,&nbsp;Chongpeng Ye,&nbsp;Wei Peng,&nbsp;Yanyan Zou,&nbsp;Xi Deng,&nbsp;Linlin Yi,&nbsp;Xujuan Wu\",\"doi\":\"10.1007/s00226-024-01562-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study utilized a self-developed gas permeability–porosity integrated analyzer to examine the gas permeability and porosity of pine, cypress, and Cunninghamia conifers across different wood orientations and parts. The findings reveal that the longitudinal permeabilities of conifers are higher than the radial and tangential permeabilities by factors of 14–100 and 275–600, respectively. A consistent exponential relationship exists between longitudinal permeability and porosity, irrespective of species. In the sapwood, the tracheid dimensions are 110.5–132.1% in radius and 103.6–116.2% in length compared to heartwood. A single tracheid exhibits higher longitudinal flow resistance than those in the radial and tangential directions. The primary longitudinal flow resistance stems from the lap surface of the upper and lower tracheids series connected with pits. In radial and tangential directions, the gas flow encounters a high density of pits from a series of connected tracheids. The number of series-connected tracheids in the longitudinal direction is only 1% of those in radial and tangential directions, whereas it reaches up to 600 times for parallel connections. This leads to considerably lower total flow resistance in the longitudinal direction compared to radial and tangential directions. The measured higher longitudinal gas permeability aligns well with the model calculations and the gas microseepage is predominantly related to tracheid structure, causing permeability variations.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 3\",\"pages\":\"1181 - 1197\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01562-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01562-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用自主研发的气体渗透性-孔隙度综合分析仪,检测了松树、柏树和杉木针叶树在不同木材方向和部位的气体渗透性和孔隙度。研究结果表明,针叶树的纵向渗透率比径向和切向渗透率分别高出 14-100 倍和 275-600 倍。纵向渗透率和孔隙率之间存在一致的指数关系,与树种无关。与心材相比,边材的气管半径和长度分别为 110.5-132.1% 和 103.6-116.2%。单根气管的纵向流动阻力大于径向和切向流动阻力。主要的纵向流动阻力来自于与凹坑相连的上下管胞系列的搭接面。在径向和切向方向上,气流会遇到一系列相连气管产生的高密度凹坑。纵向的串联气管数量仅为径向和切向的 1%,而平行连接的串联气管数量则高达 600 倍。这使得纵向的总流动阻力大大低于径向和切向。测得的较高纵向气体渗透率与模型计算结果非常吻合,气体微渗流主要与气管结构有关,从而导致渗透率变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of tracheid cell structure on gas permeability and porosity in conifer species

Effect of tracheid cell structure on gas permeability and porosity in conifer species

This study utilized a self-developed gas permeability–porosity integrated analyzer to examine the gas permeability and porosity of pine, cypress, and Cunninghamia conifers across different wood orientations and parts. The findings reveal that the longitudinal permeabilities of conifers are higher than the radial and tangential permeabilities by factors of 14–100 and 275–600, respectively. A consistent exponential relationship exists between longitudinal permeability and porosity, irrespective of species. In the sapwood, the tracheid dimensions are 110.5–132.1% in radius and 103.6–116.2% in length compared to heartwood. A single tracheid exhibits higher longitudinal flow resistance than those in the radial and tangential directions. The primary longitudinal flow resistance stems from the lap surface of the upper and lower tracheids series connected with pits. In radial and tangential directions, the gas flow encounters a high density of pits from a series of connected tracheids. The number of series-connected tracheids in the longitudinal direction is only 1% of those in radial and tangential directions, whereas it reaches up to 600 times for parallel connections. This leads to considerably lower total flow resistance in the longitudinal direction compared to radial and tangential directions. The measured higher longitudinal gas permeability aligns well with the model calculations and the gas microseepage is predominantly related to tracheid structure, causing permeability variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信