Laura Gambilongo, Nicola Chieffo, Paulo B. Lourenço
{"title":"评估考古遗址地震脆弱性的综合方法:亚利桑那州的 Wupatki Pueblo","authors":"Laura Gambilongo, Nicola Chieffo, Paulo B. Lourenço","doi":"10.1007/s10518-024-01942-9","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed research work presents a comprehensive approach to assessing the seismic vulnerability of archaeological sites. This approach aims to be a quick and easy-to-use investigation procedure that enables accurate and large-scale evaluations. While the methods employed are well-established in the literature and have been widely applied to buildings, this study contributes by proposing a structured framework that integrates different assessment procedures at different levels of analysis, specifically tailored to archaeological sites. The analysis is divided into three stages within the conceptual framework: (i) the application of the Masonry Quality Index; (ii) seismic vulnerability assessment and prediction of expected damage; and (iii) analysis of individual walls’ structural response through strength domain, capacity and fragility curves. Specifically, the study explores and adapts four Vulnerability Index methods, i.e. GNDT, Formisano, Vicente and Ferreira methods, to suit the specific characteristics of archaeological sites. To this end, a simplified procedure is proposed to estimate the conventional strength in the methods’ forms. The comparison of the index-based methods is then crucial for critically evaluating the reliability of vulnerability estimations. The paper illustrates the application of this framework through a detailed case study, i.e. the archaeological site of Wupatki Pueblo in Arizona (US), demonstrating its effectiveness in evaluating the seismic risk and defining the vulnerability distribution of the site. Consequently, this approach facilitates the identification of the most sensitive areas, which necessitate further investigation, providing useful outcomes for the decision-making process concerning the conservation and protection of archaeological sites.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 9","pages":"4413 - 4445"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01942-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive approach to assess the seismic vulnerability of archaeological sites: the Wupatki Pueblo in Arizona\",\"authors\":\"Laura Gambilongo, Nicola Chieffo, Paulo B. Lourenço\",\"doi\":\"10.1007/s10518-024-01942-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proposed research work presents a comprehensive approach to assessing the seismic vulnerability of archaeological sites. This approach aims to be a quick and easy-to-use investigation procedure that enables accurate and large-scale evaluations. While the methods employed are well-established in the literature and have been widely applied to buildings, this study contributes by proposing a structured framework that integrates different assessment procedures at different levels of analysis, specifically tailored to archaeological sites. The analysis is divided into three stages within the conceptual framework: (i) the application of the Masonry Quality Index; (ii) seismic vulnerability assessment and prediction of expected damage; and (iii) analysis of individual walls’ structural response through strength domain, capacity and fragility curves. Specifically, the study explores and adapts four Vulnerability Index methods, i.e. GNDT, Formisano, Vicente and Ferreira methods, to suit the specific characteristics of archaeological sites. To this end, a simplified procedure is proposed to estimate the conventional strength in the methods’ forms. The comparison of the index-based methods is then crucial for critically evaluating the reliability of vulnerability estimations. The paper illustrates the application of this framework through a detailed case study, i.e. the archaeological site of Wupatki Pueblo in Arizona (US), demonstrating its effectiveness in evaluating the seismic risk and defining the vulnerability distribution of the site. Consequently, this approach facilitates the identification of the most sensitive areas, which necessitate further investigation, providing useful outcomes for the decision-making process concerning the conservation and protection of archaeological sites.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 9\",\"pages\":\"4413 - 4445\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01942-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01942-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01942-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A comprehensive approach to assess the seismic vulnerability of archaeological sites: the Wupatki Pueblo in Arizona
The proposed research work presents a comprehensive approach to assessing the seismic vulnerability of archaeological sites. This approach aims to be a quick and easy-to-use investigation procedure that enables accurate and large-scale evaluations. While the methods employed are well-established in the literature and have been widely applied to buildings, this study contributes by proposing a structured framework that integrates different assessment procedures at different levels of analysis, specifically tailored to archaeological sites. The analysis is divided into three stages within the conceptual framework: (i) the application of the Masonry Quality Index; (ii) seismic vulnerability assessment and prediction of expected damage; and (iii) analysis of individual walls’ structural response through strength domain, capacity and fragility curves. Specifically, the study explores and adapts four Vulnerability Index methods, i.e. GNDT, Formisano, Vicente and Ferreira methods, to suit the specific characteristics of archaeological sites. To this end, a simplified procedure is proposed to estimate the conventional strength in the methods’ forms. The comparison of the index-based methods is then crucial for critically evaluating the reliability of vulnerability estimations. The paper illustrates the application of this framework through a detailed case study, i.e. the archaeological site of Wupatki Pueblo in Arizona (US), demonstrating its effectiveness in evaluating the seismic risk and defining the vulnerability distribution of the site. Consequently, this approach facilitates the identification of the most sensitive areas, which necessitate further investigation, providing useful outcomes for the decision-making process concerning the conservation and protection of archaeological sites.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.