{"title":"树中最大广义 4 个独立集合的最大数量","authors":"Pingshan Li, Min Xu","doi":"10.1002/jgt.23122","DOIUrl":null,"url":null,"abstract":"<p>A generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set is a set of vertices such that the induced subgraph contains no trees with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-vertices, and the generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independence number is the cardinality of a maximum <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n </mrow>\n <annotation> ${2}^{\\frac{n-3}{2}}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is odd, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${2}^{\\frac{n-2}{2}}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n}{3}-1}+\\frac{n}{3}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>0</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 0\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n-1}{3}-1}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>1</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 1\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${3}^{\\frac{n-2}{3}-1}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>2</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 2\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math> and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent sets in a tree for a general integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\unicode{x02007}(n\\ge 4)$</annotation>\n </semantics></math> is\n\n </p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 2","pages":"359-380"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of maximum generalized 4-independent sets in trees\",\"authors\":\"Pingshan Li, Min Xu\",\"doi\":\"10.1002/jgt.23122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent set is a set of vertices such that the induced subgraph contains no trees with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-vertices, and the generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independence number is the cardinality of a maximum <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent set in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n </mrow>\\n <annotation> ${2}^{\\\\frac{n-3}{2}}$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is odd, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${2}^{\\\\frac{n-2}{2}}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mfrac>\\n <mi>n</mi>\\n <mn>3</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n}{3}-1}+\\\\frac{n}{3}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>0</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 0\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n-1}{3}-1}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>1</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 1\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n-2}{3}-1}$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>2</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 2\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math> and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent sets in a tree for a general integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\unicode{x02007}(n\\\\ge 4)$</annotation>\\n </semantics></math> is\\n\\n </p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 2\",\"pages\":\"359-380\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23122\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The maximum number of maximum generalized 4-independent sets in trees
A generalized -independent set is a set of vertices such that the induced subgraph contains no trees with -vertices, and the generalized -independence number is the cardinality of a maximum -independent set in . Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order is if is odd, and if is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order is if , and if , and if and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized -independent sets in a tree for a general integer . As applications, we show that the maximum number of generalized 4-independent sets in a tree of order is
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .