树中最大广义 4 个独立集合的最大数量

Pub Date : 2024-05-30 DOI:10.1002/jgt.23122
Pingshan Li, Min Xu
{"title":"树中最大广义 4 个独立集合的最大数量","authors":"Pingshan Li,&nbsp;Min Xu","doi":"10.1002/jgt.23122","DOIUrl":null,"url":null,"abstract":"<p>A generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set is a set of vertices such that the induced subgraph contains no trees with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-vertices, and the generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independence number is the cardinality of a maximum <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n </mrow>\n <annotation> ${2}^{\\frac{n-3}{2}}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is odd, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${2}^{\\frac{n-2}{2}}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n}{3}-1}+\\frac{n}{3}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>0</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 0\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n-1}{3}-1}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>1</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 1\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${3}^{\\frac{n-2}{3}-1}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>2</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 2\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math> and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent sets in a tree for a general integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\unicode{x02007}(n\\ge 4)$</annotation>\n </semantics></math> is\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of maximum generalized 4-independent sets in trees\",\"authors\":\"Pingshan Li,&nbsp;Min Xu\",\"doi\":\"10.1002/jgt.23122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent set is a set of vertices such that the induced subgraph contains no trees with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-vertices, and the generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independence number is the cardinality of a maximum <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent set in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n </mrow>\\n <annotation> ${2}^{\\\\frac{n-3}{2}}$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is odd, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${2}^{\\\\frac{n-2}{2}}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mfrac>\\n <mi>n</mi>\\n <mn>3</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n}{3}-1}+\\\\frac{n}{3}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>0</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 0\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n-1}{3}-1}+1$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>1</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 1\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${3}^{\\\\frac{n-2}{3}-1}$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>2</mn>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mod 3</mtext>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 2\\\\unicode{x02007}(\\\\text{mod 3})$</annotation>\\n </semantics></math> and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-independent sets in a tree for a general integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo> </mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\unicode{x02007}(n\\\\ge 4)$</annotation>\\n </semantics></math> is\\n\\n </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义-独立集是这样一个顶点集,即诱导子图不包含有-顶点的树,广义-独立数是.中最大-独立集的心数。齐托证明,如果是奇数,如果是偶数,阶树中的最大广义 2-independent 集的最大个数是 。Tu 等人证明了阶树状图中最大广义 3-independent 集的最大个数是 ,且 ,且 ,且 ,且 他们描述了所有极值图的特征。受这两个漂亮结果的启发,我们建立了四个关于树中最大广义-独立集的结构定理,对于一般整数 。作为应用,我们证明了有序树中最大广义 4-independent 集的个数是 ,并且我们还描述了具有最大广义 4-independent 集的最大个数的所有极值树的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The maximum number of maximum generalized 4-independent sets in trees

A generalized k $k$ -independent set is a set of vertices such that the induced subgraph contains no trees with k $k$ -vertices, and the generalized k $k$ -independence number is the cardinality of a maximum k $k$ -independent set in G $G$ . Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order n $n$ is 2 n 3 2 ${2}^{\frac{n-3}{2}}$ if n $n$ is odd, and 2 n 2 2 + 1 ${2}^{\frac{n-2}{2}}+1$ if n $n$ is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order n $n$ is 3 n 3 1 + n 3 + 1 ${3}^{\frac{n}{3}-1}+\frac{n}{3}+1$ if n 0 ( mod 3 ) $n\equiv 0\unicode{x02007}(\text{mod 3})$ , and 3 n 1 3 1 + 1 ${3}^{\frac{n-1}{3}-1}+1$ if n 1 ( mod 3 ) $n\equiv 1\unicode{x02007}(\text{mod 3})$ , and 3 n 2 3 1 ${3}^{\frac{n-2}{3}-1}$ if n 2 ( mod 3 ) $n\equiv 2\unicode{x02007}(\text{mod 3})$ and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized k $k$ -independent sets in a tree for a general integer k $k$ . As applications, we show that the maximum number of generalized 4-independent sets in a tree of order n ( n 4 ) $n\unicode{x02007}(n\ge 4)$ is

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信