揭示合肥持续性雾霾污染事件:地面和卫星观测的视角

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Zhiyuan Fang, Hao Yang, Cheng Li, Zhiqiang Kuang, Xiang Xu, Heng Jin
{"title":"揭示合肥持续性雾霾污染事件:地面和卫星观测的视角","authors":"Zhiyuan Fang,&nbsp;Hao Yang,&nbsp;Cheng Li,&nbsp;Zhiqiang Kuang,&nbsp;Xiang Xu,&nbsp;Heng Jin","doi":"10.1007/s11869-024-01587-2","DOIUrl":null,"url":null,"abstract":"<div><p>Haze has a severe impact on public health and daily life. The effective monitoring of atmospheric environment and regional air quality can be achieved through the comprehensive utilization of ground-based stations and satellite observations. By analyzing pollutant data, ground-based lidar observations, VIIRS and CALIPSO satellite images, meteorological data, and backward trajectory patterns, the three winter aerosol pollution events are studied in the Hefei region from 2018 to 2020. The results reveal similar median PM<sub>2.5</sub> concentrations during the three aerosol pollution events, approximately 82 µg/m<sup>3</sup>, with aerosol extinction coefficients of about 0.8 and AOD values consistently exceeding 1. However, the formation processes and pollution mechanisms of the three haze events are different. Furthermore, the favorable meteorological conditions for aerosol pollution in the Hefei region during winter are the combined effects of surface cold high-pressure systems and low wind speeds. This study reveals the mechanisms underlying different aerosol pollution events in the winter season of the Hefei region, providing new reference and perspectives for aerosol pollution research and prevention.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 11","pages":"2555 - 2568"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reveal persistent haze pollution episodes in hefei: a perspective from ground-based and satellite observation\",\"authors\":\"Zhiyuan Fang,&nbsp;Hao Yang,&nbsp;Cheng Li,&nbsp;Zhiqiang Kuang,&nbsp;Xiang Xu,&nbsp;Heng Jin\",\"doi\":\"10.1007/s11869-024-01587-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Haze has a severe impact on public health and daily life. The effective monitoring of atmospheric environment and regional air quality can be achieved through the comprehensive utilization of ground-based stations and satellite observations. By analyzing pollutant data, ground-based lidar observations, VIIRS and CALIPSO satellite images, meteorological data, and backward trajectory patterns, the three winter aerosol pollution events are studied in the Hefei region from 2018 to 2020. The results reveal similar median PM<sub>2.5</sub> concentrations during the three aerosol pollution events, approximately 82 µg/m<sup>3</sup>, with aerosol extinction coefficients of about 0.8 and AOD values consistently exceeding 1. However, the formation processes and pollution mechanisms of the three haze events are different. Furthermore, the favorable meteorological conditions for aerosol pollution in the Hefei region during winter are the combined effects of surface cold high-pressure systems and low wind speeds. This study reveals the mechanisms underlying different aerosol pollution events in the winter season of the Hefei region, providing new reference and perspectives for aerosol pollution research and prevention.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 11\",\"pages\":\"2555 - 2568\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01587-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01587-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

灰霾严重影响公众健康和日常生活。综合利用地面站和卫星观测,可以实现对大气环境和区域空气质量的有效监测。通过分析污染物数据、地面激光雷达观测数据、VIIRS和CALIPSO卫星图像、气象数据以及后向轨迹模式,研究了合肥地区2018年至2020年三次冬季气溶胶污染事件。结果发现,三次气溶胶污染事件期间的PM2.5浓度中值相近,约为82微克/立方米,气溶胶消光系数约为0.8,AOD值持续超过1,但三次雾霾事件的形成过程和污染机理不同。此外,合肥地区冬季气溶胶污染的有利气象条件是地表冷高压系统和低风速的共同作用。本研究揭示了合肥地区冬季不同气溶胶污染事件的发生机理,为气溶胶污染研究和防治提供了新的参考和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reveal persistent haze pollution episodes in hefei: a perspective from ground-based and satellite observation

Reveal persistent haze pollution episodes in hefei: a perspective from ground-based and satellite observation

Reveal persistent haze pollution episodes in hefei: a perspective from ground-based and satellite observation

Haze has a severe impact on public health and daily life. The effective monitoring of atmospheric environment and regional air quality can be achieved through the comprehensive utilization of ground-based stations and satellite observations. By analyzing pollutant data, ground-based lidar observations, VIIRS and CALIPSO satellite images, meteorological data, and backward trajectory patterns, the three winter aerosol pollution events are studied in the Hefei region from 2018 to 2020. The results reveal similar median PM2.5 concentrations during the three aerosol pollution events, approximately 82 µg/m3, with aerosol extinction coefficients of about 0.8 and AOD values consistently exceeding 1. However, the formation processes and pollution mechanisms of the three haze events are different. Furthermore, the favorable meteorological conditions for aerosol pollution in the Hefei region during winter are the combined effects of surface cold high-pressure systems and low wind speeds. This study reveals the mechanisms underlying different aerosol pollution events in the winter season of the Hefei region, providing new reference and perspectives for aerosol pollution research and prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信