Vigneashwara Pandiyan, Antonios Baganis, Roland Axel Richter, Rafał Wróbel, Christian Leinenbach
{"title":"即用即质:利用对比深度学习对光学和声学特征进行传感器融合,以监测激光粉末床融合工艺中的多种材料成分","authors":"Vigneashwara Pandiyan, Antonios Baganis, Roland Axel Richter, Rafał Wróbel, Christian Leinenbach","doi":"10.1080/17452759.2024.2356080","DOIUrl":null,"url":null,"abstract":"Growing demand for multi-material Laser Powder Bed Fusion (LPBF) faces process control and quality monitoring challenges, particularly in ensuring precise material composition. This study explores ...","PeriodicalId":23756,"journal":{"name":"Virtual and Physical Prototyping","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualify-as-you-go: sensor fusion of optical and acoustic signatures with contrastive deep learning for multi-material composition monitoring in laser powder bed fusion process\",\"authors\":\"Vigneashwara Pandiyan, Antonios Baganis, Roland Axel Richter, Rafał Wróbel, Christian Leinenbach\",\"doi\":\"10.1080/17452759.2024.2356080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing demand for multi-material Laser Powder Bed Fusion (LPBF) faces process control and quality monitoring challenges, particularly in ensuring precise material composition. This study explores ...\",\"PeriodicalId\":23756,\"journal\":{\"name\":\"Virtual and Physical Prototyping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual and Physical Prototyping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17452759.2024.2356080\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual and Physical Prototyping","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17452759.2024.2356080","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Qualify-as-you-go: sensor fusion of optical and acoustic signatures with contrastive deep learning for multi-material composition monitoring in laser powder bed fusion process
Growing demand for multi-material Laser Powder Bed Fusion (LPBF) faces process control and quality monitoring challenges, particularly in ensuring precise material composition. This study explores ...
期刊介绍:
Virtual and Physical Prototyping (VPP) offers an international platform for professionals and academics to exchange innovative concepts and disseminate knowledge across the broad spectrum of virtual and rapid prototyping. The journal is exclusively online and encourages authors to submit supplementary materials such as data sets, color images, animations, and videos to enrich the content experience.
Scope:
The scope of VPP encompasses various facets of virtual and rapid prototyping.
All research articles published in VPP undergo a rigorous peer review process, which includes initial editor screening and anonymous refereeing by independent expert referees. This ensures the high quality and credibility of published work.