由 p 基定义的微分简环和环扩展

Pub Date : 2024-05-28 DOI:10.1016/j.jpaa.2024.107735
Celia del Buey de Andrés , Diego Sulca , Orlando E. Villamayor
{"title":"由 p 基定义的微分简环和环扩展","authors":"Celia del Buey de Andrés ,&nbsp;Diego Sulca ,&nbsp;Orlando E. Villamayor","doi":"10.1016/j.jpaa.2024.107735","DOIUrl":null,"url":null,"abstract":"<div><p>We review the concept of differentiably simple ring and we give a new proof of Harper's Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit <em>p</em>-basis. These extensions are called <em>Galois extensions of exponent one</em>. For such an extension <span><math><mi>A</mi><mo>⊂</mo><mi>C</mi></math></span>, we introduce an <em>A</em>-scheme, called the <em>Yuan scheme</em>, which parametrizes subextensions <span><math><mi>A</mi><mo>⊂</mo><mi>B</mi><mo>⊂</mo><mi>C</mi></math></span> such that <span><math><mi>B</mi><mo>⊂</mo><mi>C</mi></math></span> is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiably simple rings and ring extensions defined by p-basis\",\"authors\":\"Celia del Buey de Andrés ,&nbsp;Diego Sulca ,&nbsp;Orlando E. Villamayor\",\"doi\":\"10.1016/j.jpaa.2024.107735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review the concept of differentiably simple ring and we give a new proof of Harper's Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit <em>p</em>-basis. These extensions are called <em>Galois extensions of exponent one</em>. For such an extension <span><math><mi>A</mi><mo>⊂</mo><mi>C</mi></math></span>, we introduce an <em>A</em>-scheme, called the <em>Yuan scheme</em>, which parametrizes subextensions <span><math><mi>A</mi><mo>⊂</mo><mi>B</mi><mo>⊂</mo><mi>C</mi></math></span> such that <span><math><mi>B</mi><mo>⊂</mo><mi>C</mi></math></span> is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了微分简环的概念,并给出了关于正特征诺特微分简环特征的哈珀定理的新证明。然后,我们研究微分简环的平面族,或者等价于局部承认-基础的环的有限平面扩展。这些扩展称为 。对于这样的扩展,我们引入了一个-方案,称为元方案,它参数化了子扩展,使得它是固定秩的伽罗瓦。因此,袁方案大致可以看作是伽罗瓦子扩展的一种格拉斯曼。最后,我们将证明元方案是光滑的,并计算纤维的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Differentiably simple rings and ring extensions defined by p-basis

We review the concept of differentiably simple ring and we give a new proof of Harper's Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit p-basis. These extensions are called Galois extensions of exponent one. For such an extension AC, we introduce an A-scheme, called the Yuan scheme, which parametrizes subextensions ABC such that BC is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信