Shanza Rauf Khan, Sajid Ali, Wardah Burhan, Sarmed Ali, Saba Jamil, Shamsa Bibi, Naila Bilal, Sabahat Naseem, Muhammad Jamshed Latif
{"title":"比较凝胶化对海藻酸钠-氧化铁纳米复合材料高效催化降解有机染料的影响","authors":"Shanza Rauf Khan, Sajid Ali, Wardah Burhan, Sarmed Ali, Saba Jamil, Shamsa Bibi, Naila Bilal, Sabahat Naseem, Muhammad Jamshed Latif","doi":"10.1007/s13204-024-03055-w","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the synthesis of sodium alginate–iron oxide nanocomposites (SAL-Fe<sub>3</sub>O<sub>4</sub>) through the co-precipitation method, with a focus on the impact of gelation time. SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites were precipitated from Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and FeSO<sub>4</sub> under an alkaline medium in the presence of sodium alginate, maintaining a stoichiometric balance using a molar ratio of 1:2 for iron (III) Fe<sup>3+</sup> to iron (II) Fe<sup>2+</sup> ions precursors. Two types of SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites were prepared by varying the gelation time of sodium alginate to 3 and 24 h. Extensive characterization was performed using UV, FTIR, XRD and SEM with EDX analysis techniques to evaluate the properties of the nanocomposites. Fourier-Transformed infrared Spectroscopy (FTIR) analysis provided insights into the presence of sodium alginate on the SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposite surface and the bonding characteristics within the polymer. X-ray diffraction (XRD) analysis was employed to determine lattices, phases, and preferred crystal orientations (texture) of the nanocomposites. Scanning Electron Microscope (SEM) was utilized to examine morphology, microstructures, dimensions, and size of the prepared nanocomposites. Energy-Dispersive X-ray (EDX) was used for the analysis of the elemental composition of the nanocomposites. Additionally, the catalytic efficiency of SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites was evaluated through the catalytic degradation of organic dyes using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as the oxidizing agent. The degradation processes were monitored by UV-visible spectrophotometry and the apparent rate constant (k<sub>app</sub>), degradation time, percentage (%) degradation, degradation concentration and half-life values of different organic dyes were studied and compared, highlighting the influence of gelation time on the degradation efficiency.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 6","pages":"875 - 889"},"PeriodicalIF":3.6740,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison effects of gelation on sodium alginate–iron oxide nanocomposites for efficient catalytic degradation of organic dyes\",\"authors\":\"Shanza Rauf Khan, Sajid Ali, Wardah Burhan, Sarmed Ali, Saba Jamil, Shamsa Bibi, Naila Bilal, Sabahat Naseem, Muhammad Jamshed Latif\",\"doi\":\"10.1007/s13204-024-03055-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research investigates the synthesis of sodium alginate–iron oxide nanocomposites (SAL-Fe<sub>3</sub>O<sub>4</sub>) through the co-precipitation method, with a focus on the impact of gelation time. SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites were precipitated from Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and FeSO<sub>4</sub> under an alkaline medium in the presence of sodium alginate, maintaining a stoichiometric balance using a molar ratio of 1:2 for iron (III) Fe<sup>3+</sup> to iron (II) Fe<sup>2+</sup> ions precursors. Two types of SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites were prepared by varying the gelation time of sodium alginate to 3 and 24 h. Extensive characterization was performed using UV, FTIR, XRD and SEM with EDX analysis techniques to evaluate the properties of the nanocomposites. Fourier-Transformed infrared Spectroscopy (FTIR) analysis provided insights into the presence of sodium alginate on the SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposite surface and the bonding characteristics within the polymer. X-ray diffraction (XRD) analysis was employed to determine lattices, phases, and preferred crystal orientations (texture) of the nanocomposites. Scanning Electron Microscope (SEM) was utilized to examine morphology, microstructures, dimensions, and size of the prepared nanocomposites. Energy-Dispersive X-ray (EDX) was used for the analysis of the elemental composition of the nanocomposites. Additionally, the catalytic efficiency of SAL-Fe<sub>3</sub>O<sub>4</sub> nanocomposites was evaluated through the catalytic degradation of organic dyes using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as the oxidizing agent. The degradation processes were monitored by UV-visible spectrophotometry and the apparent rate constant (k<sub>app</sub>), degradation time, percentage (%) degradation, degradation concentration and half-life values of different organic dyes were studied and compared, highlighting the influence of gelation time on the degradation efficiency.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 6\",\"pages\":\"875 - 889\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-024-03055-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03055-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Comparison effects of gelation on sodium alginate–iron oxide nanocomposites for efficient catalytic degradation of organic dyes
This research investigates the synthesis of sodium alginate–iron oxide nanocomposites (SAL-Fe3O4) through the co-precipitation method, with a focus on the impact of gelation time. SAL-Fe3O4 nanocomposites were precipitated from Fe2(SO4)3 and FeSO4 under an alkaline medium in the presence of sodium alginate, maintaining a stoichiometric balance using a molar ratio of 1:2 for iron (III) Fe3+ to iron (II) Fe2+ ions precursors. Two types of SAL-Fe3O4 nanocomposites were prepared by varying the gelation time of sodium alginate to 3 and 24 h. Extensive characterization was performed using UV, FTIR, XRD and SEM with EDX analysis techniques to evaluate the properties of the nanocomposites. Fourier-Transformed infrared Spectroscopy (FTIR) analysis provided insights into the presence of sodium alginate on the SAL-Fe3O4 nanocomposite surface and the bonding characteristics within the polymer. X-ray diffraction (XRD) analysis was employed to determine lattices, phases, and preferred crystal orientations (texture) of the nanocomposites. Scanning Electron Microscope (SEM) was utilized to examine morphology, microstructures, dimensions, and size of the prepared nanocomposites. Energy-Dispersive X-ray (EDX) was used for the analysis of the elemental composition of the nanocomposites. Additionally, the catalytic efficiency of SAL-Fe3O4 nanocomposites was evaluated through the catalytic degradation of organic dyes using hydrogen peroxide (H2O2) as the oxidizing agent. The degradation processes were monitored by UV-visible spectrophotometry and the apparent rate constant (kapp), degradation time, percentage (%) degradation, degradation concentration and half-life values of different organic dyes were studied and compared, highlighting the influence of gelation time on the degradation efficiency.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.