Renu Chaudhary, Kai Diethelm, Safoura Hashemishahraki
{"title":"关于阶数 α∈ (1,2) 的分数微分方程解的分离","authors":"Renu Chaudhary, Kai Diethelm, Safoura Hashemishahraki","doi":"10.1016/j.apnum.2024.05.020","DOIUrl":null,"url":null,"abstract":"<div><p>Given the Caputo-type fractional differential equation <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msup><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, we consider two distinct solutions <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>C</mi><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span> to this equation subject to different sets of initial conditions. In this framework, we discuss nontrivial upper and lower bounds for the difference <span><math><mo>|</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>. The main emphasis is on describing how such bounds are related to the differences of the associated initial values.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001260/pdfft?md5=15a5050ef91e9812ea04bb8eb7847034&pid=1-s2.0-S0168927424001260-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the separation of solutions to fractional differential equations of order α ∈ (1,2)\",\"authors\":\"Renu Chaudhary, Kai Diethelm, Safoura Hashemishahraki\",\"doi\":\"10.1016/j.apnum.2024.05.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the Caputo-type fractional differential equation <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msup><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, we consider two distinct solutions <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>C</mi><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span> to this equation subject to different sets of initial conditions. In this framework, we discuss nontrivial upper and lower bounds for the difference <span><math><mo>|</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo></math></span> for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></math></span>. The main emphasis is on describing how such bounds are related to the differences of the associated initial values.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001260/pdfft?md5=15a5050ef91e9812ea04bb8eb7847034&pid=1-s2.0-S0168927424001260-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the separation of solutions to fractional differential equations of order α ∈ (1,2)
Given the Caputo-type fractional differential equation with , we consider two distinct solutions to this equation subject to different sets of initial conditions. In this framework, we discuss nontrivial upper and lower bounds for the difference for . The main emphasis is on describing how such bounds are related to the differences of the associated initial values.