Hounan Song, Yu Cao, Wei Chen, Lei Ren, Yongxin Ma, Kunyang Wang, Xu Wang, Yao Zhang, Luquan Ren
{"title":"膝关节假体磁流变阻尼器的设计、测试和控制","authors":"Hounan Song, Yu Cao, Wei Chen, Lei Ren, Yongxin Ma, Kunyang Wang, Xu Wang, Yao Zhang, Luquan Ren","doi":"10.1007/s42235-024-00535-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to develop a magnetorheological (MR) damper for semi-active knee prostheses to restore the walking ability of transfemoral amputees. The core dimensions of the MR damper were determined via theoretical magnetic field calculations, and the theoretical relationship between current and joint torque was derived through electromagnetic simulation. Then, a physical prototype of the semi-active prosthetic knee equipped with the MR damper was manufactured. Based on the data obtained from angle sensor, pressure sensor (loadcell), and inertial measurement unit (IMU) on the prosthesis, a matching control algorithm is developed. The joint torque of the MR damper can be adaptively adjusted according to the walking speed of the amputee, allowing the amputee to realize a natural gait. The effectiveness of the control program was verified by the ADAMS and MATLAB co-simulation. The results of the test and simulation show that the MR damper can provide sufficient torque needed for normal human activities.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1788 - 1800"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Testing and Control of a Magnetorheological Damper for Knee Prostheses\",\"authors\":\"Hounan Song, Yu Cao, Wei Chen, Lei Ren, Yongxin Ma, Kunyang Wang, Xu Wang, Yao Zhang, Luquan Ren\",\"doi\":\"10.1007/s42235-024-00535-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to develop a magnetorheological (MR) damper for semi-active knee prostheses to restore the walking ability of transfemoral amputees. The core dimensions of the MR damper were determined via theoretical magnetic field calculations, and the theoretical relationship between current and joint torque was derived through electromagnetic simulation. Then, a physical prototype of the semi-active prosthetic knee equipped with the MR damper was manufactured. Based on the data obtained from angle sensor, pressure sensor (loadcell), and inertial measurement unit (IMU) on the prosthesis, a matching control algorithm is developed. The joint torque of the MR damper can be adaptively adjusted according to the walking speed of the amputee, allowing the amputee to realize a natural gait. The effectiveness of the control program was verified by the ADAMS and MATLAB co-simulation. The results of the test and simulation show that the MR damper can provide sufficient torque needed for normal human activities.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1788 - 1800\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00535-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00535-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design, Testing and Control of a Magnetorheological Damper for Knee Prostheses
This study aims to develop a magnetorheological (MR) damper for semi-active knee prostheses to restore the walking ability of transfemoral amputees. The core dimensions of the MR damper were determined via theoretical magnetic field calculations, and the theoretical relationship between current and joint torque was derived through electromagnetic simulation. Then, a physical prototype of the semi-active prosthetic knee equipped with the MR damper was manufactured. Based on the data obtained from angle sensor, pressure sensor (loadcell), and inertial measurement unit (IMU) on the prosthesis, a matching control algorithm is developed. The joint torque of the MR damper can be adaptively adjusted according to the walking speed of the amputee, allowing the amputee to realize a natural gait. The effectiveness of the control program was verified by the ADAMS and MATLAB co-simulation. The results of the test and simulation show that the MR damper can provide sufficient torque needed for normal human activities.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.