空间节制分数对流扩散模型的无条件稳定数值方法

IF 1.3 4区 数学 Q1 MATHEMATICS
Zeshan Qiu
{"title":"空间节制分数对流扩散模型的无条件稳定数值方法","authors":"Zeshan Qiu","doi":"10.1155/2024/6710903","DOIUrl":null,"url":null,"abstract":"A second-order numerical method for two-sided tempered fractional convection-diffusion equations is studied in this paper, both convection term and diffusion term are approximated by the tempered weighted and shifted Grünwald difference operators, the first time partial derivative is discretized by the Crank–Nicolson method, and then a class of second-order numerical schemes is derived. By means of matrix method, numerical schemes are proved to be unconditionally stable and convergent with order <span><svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 35.65 13.8595\" width=\"35.65pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.387,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,13.885,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,20.167,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.019,0)\"></path></g></svg><span></span><span><svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"38.506183799999995 -11.5914 16.394 13.8595\" width=\"16.394pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,38.556,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,45.264,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,50.21,0)\"></path></g></svg>.</span></span> The validity of the proposed numerical scheme is verified by numerical experiments.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"107 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unconditionally Stable Numerical Method for Space Tempered Fractional Convection-Diffusion Models\",\"authors\":\"Zeshan Qiu\",\"doi\":\"10.1155/2024/6710903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A second-order numerical method for two-sided tempered fractional convection-diffusion equations is studied in this paper, both convection term and diffusion term are approximated by the tempered weighted and shifted Grünwald difference operators, the first time partial derivative is discretized by the Crank–Nicolson method, and then a class of second-order numerical schemes is derived. By means of matrix method, numerical schemes are proved to be unconditionally stable and convergent with order <span><svg height=\\\"13.8595pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 35.65 13.8595\\\" width=\\\"35.65pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.387,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,13.885,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.167,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.019,0)\\\"></path></g></svg><span></span><span><svg height=\\\"13.8595pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"38.506183799999995 -11.5914 16.394 13.8595\\\" width=\\\"16.394pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,38.556,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,45.264,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,50.21,0)\\\"></path></g></svg>.</span></span> The validity of the proposed numerical scheme is verified by numerical experiments.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6710903\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6710903","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了双面节制分式对流扩散方程的二阶数值方法,对流项和扩散项都用节制加权和移位格吕内瓦尔德差分算子近似,第一次偏导数用 Crank-Nicolson 方法离散,然后推导出一类二阶数值方案。通过矩阵法证明了数值方案的无条件稳定性和阶收敛性。通过数值实验验证了所提出数值方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unconditionally Stable Numerical Method for Space Tempered Fractional Convection-Diffusion Models
A second-order numerical method for two-sided tempered fractional convection-diffusion equations is studied in this paper, both convection term and diffusion term are approximated by the tempered weighted and shifted Grünwald difference operators, the first time partial derivative is discretized by the Crank–Nicolson method, and then a class of second-order numerical schemes is derived. By means of matrix method, numerical schemes are proved to be unconditionally stable and convergent with order . The validity of the proposed numerical scheme is verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信