{"title":"通用无网格基尔霍夫-洛夫壳公式","authors":"Jiarui Wang, Yuri Bazilevs","doi":"10.1007/s00366-024-01989-x","DOIUrl":null,"url":null,"abstract":"<p>A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general-purpose meshfree Kirchhoff–Love shell formulation\",\"authors\":\"Jiarui Wang, Yuri Bazilevs\",\"doi\":\"10.1007/s00366-024-01989-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01989-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01989-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A general-purpose meshfree Kirchhoff–Love shell formulation
A thin shell formulation is developed for the approximation by a meshfree Reproducing Kernel Particle Method (RKPM). The formulation is derived from a degenerated shell approach where the structure is treated as a 3D solid subjected to kinematic constraints of the Kirchhoff–Love (KL) shell theory. To address the challenge of surface geometry representation in a meshfree method, a local parameterization using principal component analysis (PCA) is employed. Taylor-series expansion adapted to the shell formulation is developed to address the accuracy and stability issues of nodal quadrature. Several approaches that address membrane locking are also considered. The effectiveness of the proposed RKPM KL shell formulation is demonstrated using an extensive set of linear-elastic and finite-deformation inelastic test cases.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.