五常饱和游戏

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Zhen He, Mei Lu
{"title":"五常饱和游戏","authors":"Zhen He, Mei Lu","doi":"10.1007/s10255-024-1125-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>F, G</i> and <i>H</i> be three graphs with <i>G</i> ⊆ <i>H</i>. We call <i>G</i> an <i>F</i>-saturated graph relative to <i>H</i>, if there is no copy of <i>F</i> in <i>G</i> but there is a copy of <i>F</i> in <i>G</i> + <i>e</i> for any <i>e</i> ∈ <i>E</i>(<i>H</i>) <i>E</i>(<i>G</i>). The <i>F</i>-saturation game on host graph <i>H</i> consists of two players, named Max and Min, who alternately add edges of <i>H</i> to <i>G</i> such that each chosen edge avoids creating a copy of <i>F</i> in <i>G</i>, and the players continue to choose edges until <i>G</i> becomes <i>F</i>-saturated relative to <i>H</i>. Max wishes to maximize the length of the game, while Min wishes to minimize the process. Let sat<sub><i>g</i></sub>(<i>F, H</i>) (resp. sat′<sub><i>g</i></sub>(<i>F, H</i>)) denote the number of edges chosen when Max (resp. when Min) starts the game and both players play optimally. In this article, we show that sat<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>n</i></sub>) = sat′<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>n</i></sub>) = <i>n</i> + 2 for <i>n</i> ≥ 15, and sat<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>m,n</i></sub>), sat′<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>m,n</i></sub>) lie in <span>\\(\\left\\{ {m + n - \\left\\lfloor {{{m - 2} \\over 4}} \\right\\rfloor ,\\,m + n - \\left\\lceil {{{m - 3} \\over 4}} \\right\\rceil } \\right\\}\\)</span> if <span>\\(n \\ge {5 \\over 2}m\\)</span> and <i>m</i> ≥ 4, respectively.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"45 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The P5-saturation Game\",\"authors\":\"Zhen He, Mei Lu\",\"doi\":\"10.1007/s10255-024-1125-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>F, G</i> and <i>H</i> be three graphs with <i>G</i> ⊆ <i>H</i>. We call <i>G</i> an <i>F</i>-saturated graph relative to <i>H</i>, if there is no copy of <i>F</i> in <i>G</i> but there is a copy of <i>F</i> in <i>G</i> + <i>e</i> for any <i>e</i> ∈ <i>E</i>(<i>H</i>) <i>E</i>(<i>G</i>). The <i>F</i>-saturation game on host graph <i>H</i> consists of two players, named Max and Min, who alternately add edges of <i>H</i> to <i>G</i> such that each chosen edge avoids creating a copy of <i>F</i> in <i>G</i>, and the players continue to choose edges until <i>G</i> becomes <i>F</i>-saturated relative to <i>H</i>. Max wishes to maximize the length of the game, while Min wishes to minimize the process. Let sat<sub><i>g</i></sub>(<i>F, H</i>) (resp. sat′<sub><i>g</i></sub>(<i>F, H</i>)) denote the number of edges chosen when Max (resp. when Min) starts the game and both players play optimally. In this article, we show that sat<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>n</i></sub>) = sat′<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>n</i></sub>) = <i>n</i> + 2 for <i>n</i> ≥ 15, and sat<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>m,n</i></sub>), sat′<sub><i>g</i></sub>(<i>P</i><sub>5</sub>, <i>K</i><sub><i>m,n</i></sub>) lie in <span>\\\\(\\\\left\\\\{ {m + n - \\\\left\\\\lfloor {{{m - 2} \\\\over 4}} \\\\right\\\\rfloor ,\\\\,m + n - \\\\left\\\\lceil {{{m - 3} \\\\over 4}} \\\\right\\\\rceil } \\\\right\\\\}\\\\)</span> if <span>\\\\(n \\\\ge {5 \\\\over 2}m\\\\)</span> and <i>m</i> ≥ 4, respectively.</p>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1125-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1125-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

假设 F、G 和 H 是三个图,其中 G ⊆ H。如果 G 中没有 F 的副本,但对于任意 e∈E(H) E(G),G + e 中有 F 的副本,则我们称 G 为相对于 H 的 F 饱和图。主图 H 上的 F 饱和博弈由名为 Max 和 Min 的两个玩家组成,他们交替将 H 的边添加到 G 中,使得所选的每条边都能避免在 G 中创建 F 的副本。让 satg(F,H)(或 sat′g(F,H))表示当 Max(或 Min)开始博弈且双方都以最优方式下棋时所选择的边的数量。在本文中,我们将证明当n≥15时,satg(P5,Kn)= sat′g(P5,Kn)= n + 2,并且satg(P5,Km,n), sat′g(P5,Km,n)位于({m + n - \left\lfloor {{m - 2} \over 4}}\right\rfloor ,\m + n -\left\lceil {{m - 3}\over 4}}\right\rceil }如果n(ge {5 \over 2}m\)和m≥4,就分别是right\rfloor ,\,n -\left\lceil {{m -3}\over 4} \right\rceil }。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The P5-saturation Game

Let F, G and H be three graphs with GH. We call G an F-saturated graph relative to H, if there is no copy of F in G but there is a copy of F in G + e for any eE(H) E(G). The F-saturation game on host graph H consists of two players, named Max and Min, who alternately add edges of H to G such that each chosen edge avoids creating a copy of F in G, and the players continue to choose edges until G becomes F-saturated relative to H. Max wishes to maximize the length of the game, while Min wishes to minimize the process. Let satg(F, H) (resp. sat′g(F, H)) denote the number of edges chosen when Max (resp. when Min) starts the game and both players play optimally. In this article, we show that satg(P5, Kn) = sat′g(P5, Kn) = n + 2 for n ≥ 15, and satg(P5, Km,n), sat′g(P5, Km,n) lie in \(\left\{ {m + n - \left\lfloor {{{m - 2} \over 4}} \right\rfloor ,\,m + n - \left\lceil {{{m - 3} \over 4}} \right\rceil } \right\}\) if \(n \ge {5 \over 2}m\) and m ≥ 4, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信