{"title":"高阶非线性延迟微分方程的同构解","authors":"Ye-zhou Li, Ming-yue Wu, He-qing Sun","doi":"10.1007/s10255-024-1098-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>w</i>(<i>z</i>) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations </p><span>$$\\matrix{{w\\left( {z + 1} \\right)w\\left( {z - 1} \\right)\\, + \\,a\\left( z \\right){{{w^{\\left( k \\right)}}\\left( z \\right)} \\over {w\\left( z \\right)}} = R\\left( {z,\\,w\\left( z \\right)} \\right),} & {k \\in \\mathbb{N}{^ + },} \\cr}$$</span><p> where <i>a</i>(<i>z</i>) is rational, <span>\\(R\\left( {z,\\,w\\left( z \\right)} \\right) = {{P\\left( {z,\\,w,\\,\\left( z \\right)} \\right)} \\over {Q\\left( {z,\\,w,\\,\\left( z \\right)} \\right)}}\\)</span> is an irreducible rational function in <i>w</i> with rational coefficients in <i>z</i>. This paper mainly show the relationships of the degree of <i>P</i>(<i>z,w</i>(<i>z</i>)) and <i>Q</i>(<i>z,w</i>(<i>z</i>)) when the above equations exist such solutions <i>w</i>(<i>z</i>). There are also some examples to show that our results are sharp.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meromorphic Solutions to Higher Order Nonlinear Delay Differential Equations\",\"authors\":\"Ye-zhou Li, Ming-yue Wu, He-qing Sun\",\"doi\":\"10.1007/s10255-024-1098-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>w</i>(<i>z</i>) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations </p><span>$$\\\\matrix{{w\\\\left( {z + 1} \\\\right)w\\\\left( {z - 1} \\\\right)\\\\, + \\\\,a\\\\left( z \\\\right){{{w^{\\\\left( k \\\\right)}}\\\\left( z \\\\right)} \\\\over {w\\\\left( z \\\\right)}} = R\\\\left( {z,\\\\,w\\\\left( z \\\\right)} \\\\right),} & {k \\\\in \\\\mathbb{N}{^ + },} \\\\cr}$$</span><p> where <i>a</i>(<i>z</i>) is rational, <span>\\\\(R\\\\left( {z,\\\\,w\\\\left( z \\\\right)} \\\\right) = {{P\\\\left( {z,\\\\,w,\\\\,\\\\left( z \\\\right)} \\\\right)} \\\\over {Q\\\\left( {z,\\\\,w,\\\\,\\\\left( z \\\\right)} \\\\right)}}\\\\)</span> is an irreducible rational function in <i>w</i> with rational coefficients in <i>z</i>. This paper mainly show the relationships of the degree of <i>P</i>(<i>z,w</i>(<i>z</i>)) and <i>Q</i>(<i>z,w</i>(<i>z</i>)) when the above equations exist such solutions <i>w</i>(<i>z</i>). There are also some examples to show that our results are sharp.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1098-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1098-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Let w(z) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations $$matrix{{w\left( {z + 1} \right)w\left( {z - 1} \right)\、+ \,a\left( z \right){{w^{\left( k \right)}}\left( z \right)} over {w\left( z \right)}} = R\left( {z,\,w\left( z \right)} \right),} &;{k \in \mathbb{N}{^ + },} \cr}$$ 其中a(z)是有理的, \(R\left( {z,\,w\left( z\right)} \right) = {{P\left( {z,\,w,\、\over{Q\left({z,\,w,\,\left(z\right)}\right)})是一个在 w 中具有在 z 中的有理系数的不可还原的有理函数。本文主要说明当上述方程存在这样的解 w(z) 时,P(z,w(z)) 和 Q(z,w(z)) 的度数关系。本文还列举了一些例子来说明我们的结果是尖锐的。
Meromorphic Solutions to Higher Order Nonlinear Delay Differential Equations
Let w(z) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations
$$\matrix{{w\left( {z + 1} \right)w\left( {z - 1} \right)\, + \,a\left( z \right){{{w^{\left( k \right)}}\left( z \right)} \over {w\left( z \right)}} = R\left( {z,\,w\left( z \right)} \right),} & {k \in \mathbb{N}{^ + },} \cr}$$
where a(z) is rational, \(R\left( {z,\,w\left( z \right)} \right) = {{P\left( {z,\,w,\,\left( z \right)} \right)} \over {Q\left( {z,\,w,\,\left( z \right)} \right)}}\) is an irreducible rational function in w with rational coefficients in z. This paper mainly show the relationships of the degree of P(z,w(z)) and Q(z,w(z)) when the above equations exist such solutions w(z). There are also some examples to show that our results are sharp.