高阶非线性延迟微分方程的同构解

Pub Date : 2024-06-01 DOI:10.1007/s10255-024-1098-3
Ye-zhou Li, Ming-yue Wu, He-qing Sun
{"title":"高阶非线性延迟微分方程的同构解","authors":"Ye-zhou Li, Ming-yue Wu, He-qing Sun","doi":"10.1007/s10255-024-1098-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>w</i>(<i>z</i>) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations </p><span>$$\\matrix{{w\\left( {z + 1} \\right)w\\left( {z - 1} \\right)\\, + \\,a\\left( z \\right){{{w^{\\left( k \\right)}}\\left( z \\right)} \\over {w\\left( z \\right)}} = R\\left( {z,\\,w\\left( z \\right)} \\right),} &amp; {k \\in \\mathbb{N}{^ + },} \\cr}$$</span><p> where <i>a</i>(<i>z</i>) is rational, <span>\\(R\\left( {z,\\,w\\left( z \\right)} \\right) = {{P\\left( {z,\\,w,\\,\\left( z \\right)} \\right)} \\over {Q\\left( {z,\\,w,\\,\\left( z \\right)} \\right)}}\\)</span> is an irreducible rational function in <i>w</i> with rational coefficients in <i>z</i>. This paper mainly show the relationships of the degree of <i>P</i>(<i>z,w</i>(<i>z</i>)) and <i>Q</i>(<i>z,w</i>(<i>z</i>)) when the above equations exist such solutions <i>w</i>(<i>z</i>). There are also some examples to show that our results are sharp.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meromorphic Solutions to Higher Order Nonlinear Delay Differential Equations\",\"authors\":\"Ye-zhou Li, Ming-yue Wu, He-qing Sun\",\"doi\":\"10.1007/s10255-024-1098-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>w</i>(<i>z</i>) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations </p><span>$$\\\\matrix{{w\\\\left( {z + 1} \\\\right)w\\\\left( {z - 1} \\\\right)\\\\, + \\\\,a\\\\left( z \\\\right){{{w^{\\\\left( k \\\\right)}}\\\\left( z \\\\right)} \\\\over {w\\\\left( z \\\\right)}} = R\\\\left( {z,\\\\,w\\\\left( z \\\\right)} \\\\right),} &amp; {k \\\\in \\\\mathbb{N}{^ + },} \\\\cr}$$</span><p> where <i>a</i>(<i>z</i>) is rational, <span>\\\\(R\\\\left( {z,\\\\,w\\\\left( z \\\\right)} \\\\right) = {{P\\\\left( {z,\\\\,w,\\\\,\\\\left( z \\\\right)} \\\\right)} \\\\over {Q\\\\left( {z,\\\\,w,\\\\,\\\\left( z \\\\right)} \\\\right)}}\\\\)</span> is an irreducible rational function in <i>w</i> with rational coefficients in <i>z</i>. This paper mainly show the relationships of the degree of <i>P</i>(<i>z,w</i>(<i>z</i>)) and <i>Q</i>(<i>z,w</i>(<i>z</i>)) when the above equations exist such solutions <i>w</i>(<i>z</i>). There are also some examples to show that our results are sharp.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1098-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1098-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Let w(z) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations $$matrix{{w\left( {z + 1} \right)w\left( {z - 1} \right)\、+ \,a\left( z \right){{w^{\left( k \right)}}\left( z \right)} over {w\left( z \right)}} = R\left( {z,\,w\left( z \right)} \right),} &;{k \in \mathbb{N}{^ + },} \cr}$$ 其中a(z)是有理的, \(R\left( {z,\,w\left( z\right)} \right) = {{P\left( {z,\,w,\、\over{Q\left({z,\,w,\,\left(z\right)}\right)})是一个在 w 中具有在 z 中的有理系数的不可还原的有理函数。本文主要说明当上述方程存在这样的解 w(z) 时,P(z,w(z)) 和 Q(z,w(z)) 的度数关系。本文还列举了一些例子来说明我们的结果是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Meromorphic Solutions to Higher Order Nonlinear Delay Differential Equations

Let w(z) be non-rational meromorphic solutions with hyper-order less than 1 to a family of higher order nonlinear delay differential equations

$$\matrix{{w\left( {z + 1} \right)w\left( {z - 1} \right)\, + \,a\left( z \right){{{w^{\left( k \right)}}\left( z \right)} \over {w\left( z \right)}} = R\left( {z,\,w\left( z \right)} \right),} & {k \in \mathbb{N}{^ + },} \cr}$$

where a(z) is rational, \(R\left( {z,\,w\left( z \right)} \right) = {{P\left( {z,\,w,\,\left( z \right)} \right)} \over {Q\left( {z,\,w,\,\left( z \right)} \right)}}\) is an irreducible rational function in w with rational coefficients in z. This paper mainly show the relationships of the degree of P(z,w(z)) and Q(z,w(z)) when the above equations exist such solutions w(z). There are also some examples to show that our results are sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信