带有跳跃的多变量扩散的欧式利差期权定价的伊托-泰勒扩展法

Pub Date : 2024-06-01 DOI:10.1007/s10255-024-1094-7
Ge Wang, Yu-xuan Lu, Qing Zhou, Wei-lin Xiao
{"title":"带有跳跃的多变量扩散的欧式利差期权定价的伊托-泰勒扩展法","authors":"Ge Wang, Yu-xuan Lu, Qing Zhou, Wei-lin Xiao","doi":"10.1007/s10255-024-1094-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new method for spread option pricing under the multivariate irreducible diffusions without jumps and with different types of jumps by the expansion of the transition density function. By the quasi-Lamperti transform, which unitizes the diffusion matrix at the initial time, and applying the small-time Itô-Taylor expansion method, we derive explicit recursive formulas for the expansion coefficients of transition densities and spread option prices for multivariate diffusions with jumps in return. It is worth mentioning that we also give the closed-form formula of spread option price whose underlying asset price processes contain a Merton jump and a double exponential jump, which is innovative compared with current literature. The theoretical proof of convergence is presented in detail.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Itô-Taylor Expansion Method of European Spread Option Pricing for Multivariate Diffusions with Jumps\",\"authors\":\"Ge Wang, Yu-xuan Lu, Qing Zhou, Wei-lin Xiao\",\"doi\":\"10.1007/s10255-024-1094-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a new method for spread option pricing under the multivariate irreducible diffusions without jumps and with different types of jumps by the expansion of the transition density function. By the quasi-Lamperti transform, which unitizes the diffusion matrix at the initial time, and applying the small-time Itô-Taylor expansion method, we derive explicit recursive formulas for the expansion coefficients of transition densities and spread option prices for multivariate diffusions with jumps in return. It is worth mentioning that we also give the closed-form formula of spread option price whose underlying asset price processes contain a Merton jump and a double exponential jump, which is innovative compared with current literature. The theoretical proof of convergence is presented in detail.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1094-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1094-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在无跳跃和有不同类型跳跃的多变量不可还原扩散条件下,通过扩展过渡密度函数进行价差期权定价的新方法。通过准兰佩蒂变换将初始时的扩散矩阵单元化,并应用小时间伊托-泰勒扩张法,我们推导出了有跳跃的多变量扩散的过渡密度扩张系数和价差期权价格的显式递推公式。值得一提的是,我们还给出了基础资产价格过程包含默顿跳跃和双指数跳跃的价差期权价格的闭式计算公式,与现有文献相比具有创新性。我们还详细介绍了收敛性的理论证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Itô-Taylor Expansion Method of European Spread Option Pricing for Multivariate Diffusions with Jumps

In this paper, we propose a new method for spread option pricing under the multivariate irreducible diffusions without jumps and with different types of jumps by the expansion of the transition density function. By the quasi-Lamperti transform, which unitizes the diffusion matrix at the initial time, and applying the small-time Itô-Taylor expansion method, we derive explicit recursive formulas for the expansion coefficients of transition densities and spread option prices for multivariate diffusions with jumps in return. It is worth mentioning that we also give the closed-form formula of spread option price whose underlying asset price processes contain a Merton jump and a double exponential jump, which is innovative compared with current literature. The theoretical proof of convergence is presented in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信