{"title":"具有 L2 次临界增长的ℝN 中非线性双谐波薛定谔方程的多重归一化解决方案","authors":"Jun Wang, Li Wang, Ji-xiu Wang","doi":"10.1007/s10255-024-1131-6","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the existence of normalized solutions for the following nonlinear biharmonic Schrödinger equations</p><span>$$\\left\\{{\\matrix{{{\\Delta ^2}u = \\lambda u + h\\left({\\varepsilon x} \\right)\\,f\\left(u \\right),} & {x \\in \\mathbb{R}{^N},} \\cr {\\int_{\\mathbb{R}{^N}} {{{\\left| u \\right|}^2}dx = {c^2},}} & {x \\in \\mathbb{R}{^N},} \\cr}} \\right.$$</span><p>where <i>c, ε</i> > 0; <i>N</i> ≥ 5; <i>λ</i> ∈ ℝ is a Lagrange multiplier and is unknown, <i>h</i> ∈ <i>C</i>(ℝ<sup><i>N</i></sup>; [0;∞)); <i>f</i>: ℝ → ℝ is continuous function satisfying <i>L</i><sup>2</sup>-subcritical growth. When <i>ε</i> is small enough, we get multiple normalized solutions. Moreover, we also obtain orbital stability of the solutions.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"49 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Normalized Solutions for Nonlinear Biharmonic Schrödinger Equations in ℝN with L2-Subcritical Growth\",\"authors\":\"Jun Wang, Li Wang, Ji-xiu Wang\",\"doi\":\"10.1007/s10255-024-1131-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider the existence of normalized solutions for the following nonlinear biharmonic Schrödinger equations</p><span>$$\\\\left\\\\{{\\\\matrix{{{\\\\Delta ^2}u = \\\\lambda u + h\\\\left({\\\\varepsilon x} \\\\right)\\\\,f\\\\left(u \\\\right),} & {x \\\\in \\\\mathbb{R}{^N},} \\\\cr {\\\\int_{\\\\mathbb{R}{^N}} {{{\\\\left| u \\\\right|}^2}dx = {c^2},}} & {x \\\\in \\\\mathbb{R}{^N},} \\\\cr}} \\\\right.$$</span><p>where <i>c, ε</i> > 0; <i>N</i> ≥ 5; <i>λ</i> ∈ ℝ is a Lagrange multiplier and is unknown, <i>h</i> ∈ <i>C</i>(ℝ<sup><i>N</i></sup>; [0;∞)); <i>f</i>: ℝ → ℝ is continuous function satisfying <i>L</i><sup>2</sup>-subcritical growth. When <i>ε</i> is small enough, we get multiple normalized solutions. Moreover, we also obtain orbital stability of the solutions.</p>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10255-024-1131-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1131-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
where c, ε > 0; N ≥ 5; λ ∈ ℝ is a Lagrange multiplier and is unknown, h ∈ C(ℝN; [0;∞)); f: ℝ → ℝ is continuous function satisfying L2-subcritical growth. When ε is small enough, we get multiple normalized solutions. Moreover, we also obtain orbital stability of the solutions.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.