{"title":"基于弱形式正交元素法的几何精确功能分级压电壳机电耦合分析","authors":"Tingrui Chen, Jijun Liu, Run Zhang, Xiaohu Yao","doi":"10.1007/s00419-024-02619-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a numerical model for electro-mechanical coupling analysis of geometrically nonlinear functionally graded piezoelectric shell is developed based on the weak form quadrature element method. Both piezoelectric and flexoelectric effects are introduced to establish the geometrically exact shell model with its constituent BaTiO<sub>3</sub> and PZT-5H graded through the thickness. The electric potentials are assumed quadratic along the shell thickness to introduce the electric field for numerical implementation, while four different closed- or open-circuit conditions are considered. Four typical examples are presented to demonstrate the effectiveness of the present model and illustrate the influences of electro-mechanical couplings and functional graded materials on the responses of shells undergoing large displacements and rotations. This model is a feasible scheme for studying complex nonlinear behaviors of piezoelectric shells that might be helpful in devising piezoelectric shell-based nanoelectronics.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 7","pages":"1923 - 1949"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromechanical coupling analysis of geometrically exact functionally graded piezoelectric shells based on weak form quadrature element method\",\"authors\":\"Tingrui Chen, Jijun Liu, Run Zhang, Xiaohu Yao\",\"doi\":\"10.1007/s00419-024-02619-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a numerical model for electro-mechanical coupling analysis of geometrically nonlinear functionally graded piezoelectric shell is developed based on the weak form quadrature element method. Both piezoelectric and flexoelectric effects are introduced to establish the geometrically exact shell model with its constituent BaTiO<sub>3</sub> and PZT-5H graded through the thickness. The electric potentials are assumed quadratic along the shell thickness to introduce the electric field for numerical implementation, while four different closed- or open-circuit conditions are considered. Four typical examples are presented to demonstrate the effectiveness of the present model and illustrate the influences of electro-mechanical couplings and functional graded materials on the responses of shells undergoing large displacements and rotations. This model is a feasible scheme for studying complex nonlinear behaviors of piezoelectric shells that might be helpful in devising piezoelectric shell-based nanoelectronics.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 7\",\"pages\":\"1923 - 1949\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02619-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02619-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Electromechanical coupling analysis of geometrically exact functionally graded piezoelectric shells based on weak form quadrature element method
In this study, a numerical model for electro-mechanical coupling analysis of geometrically nonlinear functionally graded piezoelectric shell is developed based on the weak form quadrature element method. Both piezoelectric and flexoelectric effects are introduced to establish the geometrically exact shell model with its constituent BaTiO3 and PZT-5H graded through the thickness. The electric potentials are assumed quadratic along the shell thickness to introduce the electric field for numerical implementation, while four different closed- or open-circuit conditions are considered. Four typical examples are presented to demonstrate the effectiveness of the present model and illustrate the influences of electro-mechanical couplings and functional graded materials on the responses of shells undergoing large displacements and rotations. This model is a feasible scheme for studying complex nonlinear behaviors of piezoelectric shells that might be helpful in devising piezoelectric shell-based nanoelectronics.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.