超弹性木基纳米发电机放大压电效应,实现可持续能源转换

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-05-29 DOI:10.1002/cey2.561
Tong Wu, Yun Lu, Xinglin Tao, Pan Chen, Yongyue Zhang, Bohua Ren, Feifan Xie, Xia Yu, Xinyi Zhou, Dongjiang Yang, Jin Sun, Xiangyu Chen
{"title":"超弹性木基纳米发电机放大压电效应,实现可持续能源转换","authors":"Tong Wu, Yun Lu, Xinglin Tao, Pan Chen, Yongyue Zhang, Bohua Ren, Feifan Xie, Xia Yu, Xinyi Zhou, Dongjiang Yang, Jin Sun, Xiangyu Chen","doi":"10.1002/cey2.561","DOIUrl":null,"url":null,"abstract":"In the quest for sustainable energy materials, wood is discovered to be a potential piezoelectric material. However, the rigidity, poor stability, and low piezoelectric properties of wood impede its development. Here, we obtained a superelastic roasted wood nanogenerator (RW-NG) by unraveling ray tissues through a sustainable roasting strategy. The increased compressibility of roasted wood intensifies the deformation of cellulose microfibrils, significantly enhancing the piezoelectric effect in wood. Roasted wood (15 × 15 × 15 mm<sup>3</sup>, longitudinal × radial × tangential) can generate a voltage and current outputs of 1.4 V and 14.5 nA, respectively, which are more than 70 times that of natural wood. The wood sample can recover 90% of its shape after 5000 compressions at 65% strain, exhibiting excellent elasticity and stability. Importantly, roasted wood does not add any toxic substances and can be safely applied on the human skin as a self-powered sensor for detecting body movements. Moreover, it can also be assembled into self-powered wooden floors for energy harvesting. These indicate that roasted wood has great potential for sustainable sensing and energy conversion.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion\",\"authors\":\"Tong Wu, Yun Lu, Xinglin Tao, Pan Chen, Yongyue Zhang, Bohua Ren, Feifan Xie, Xia Yu, Xinyi Zhou, Dongjiang Yang, Jin Sun, Xiangyu Chen\",\"doi\":\"10.1002/cey2.561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the quest for sustainable energy materials, wood is discovered to be a potential piezoelectric material. However, the rigidity, poor stability, and low piezoelectric properties of wood impede its development. Here, we obtained a superelastic roasted wood nanogenerator (RW-NG) by unraveling ray tissues through a sustainable roasting strategy. The increased compressibility of roasted wood intensifies the deformation of cellulose microfibrils, significantly enhancing the piezoelectric effect in wood. Roasted wood (15 × 15 × 15 mm<sup>3</sup>, longitudinal × radial × tangential) can generate a voltage and current outputs of 1.4 V and 14.5 nA, respectively, which are more than 70 times that of natural wood. The wood sample can recover 90% of its shape after 5000 compressions at 65% strain, exhibiting excellent elasticity and stability. Importantly, roasted wood does not add any toxic substances and can be safely applied on the human skin as a self-powered sensor for detecting body movements. Moreover, it can also be assembled into self-powered wooden floors for energy harvesting. These indicate that roasted wood has great potential for sustainable sensing and energy conversion.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.561\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在寻求可持续能源材料的过程中,人们发现木材是一种潜在的压电材料。然而,木材的刚性、稳定性和低压电特性阻碍了它的发展。在这里,我们通过可持续的焙烧策略解开了射线组织,从而获得了超弹性焙烧木材纳米发电机(RW-NG)。焙烧木材的可压缩性增加,加剧了纤维素微纤维的变形,显著增强了木材的压电效应。焙烧木材(15 × 15 × 15 mm3,纵向 × 径向 × 切向)可产生的电压和电流输出分别为 1.4 V 和 14.5 nA,是天然木材的 70 多倍。木材样品在 65% 的应变下压缩 5000 次后,可恢复 90% 的形状,表现出极佳的弹性和稳定性。重要的是,焙烧木材不添加任何有毒物质,可安全地应用于人体皮肤,作为自供电传感器检测人体运动。此外,它还可以组装成自供电的木地板,用于能量采集。这些都表明,焙烧木材在可持续传感和能源转换方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion

Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion
In the quest for sustainable energy materials, wood is discovered to be a potential piezoelectric material. However, the rigidity, poor stability, and low piezoelectric properties of wood impede its development. Here, we obtained a superelastic roasted wood nanogenerator (RW-NG) by unraveling ray tissues through a sustainable roasting strategy. The increased compressibility of roasted wood intensifies the deformation of cellulose microfibrils, significantly enhancing the piezoelectric effect in wood. Roasted wood (15 × 15 × 15 mm3, longitudinal × radial × tangential) can generate a voltage and current outputs of 1.4 V and 14.5 nA, respectively, which are more than 70 times that of natural wood. The wood sample can recover 90% of its shape after 5000 compressions at 65% strain, exhibiting excellent elasticity and stability. Importantly, roasted wood does not add any toxic substances and can be safely applied on the human skin as a self-powered sensor for detecting body movements. Moreover, it can also be assembled into self-powered wooden floors for energy harvesting. These indicate that roasted wood has great potential for sustainable sensing and energy conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信