电荷不成比例和自旋态不成比例应变 SrCoO2.5 薄膜中的高温绝缘铁磁态

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-05-30 DOI:10.1063/5.0188767
Sourav Chowdhury, Anupam Jana, Ritu Rawat, Priyanka Yadav, Rajibul Islam, Fei Xue, A. K. Mandal, Sumit Sarkar, Rajan Mishra, R. Venkatesh, D. M. Phase, R. J. Choudhary
{"title":"电荷不成比例和自旋态不成比例应变 SrCoO2.5 薄膜中的高温绝缘铁磁态","authors":"Sourav Chowdhury, Anupam Jana, Ritu Rawat, Priyanka Yadav, Rajibul Islam, Fei Xue, A. K. Mandal, Sumit Sarkar, Rajan Mishra, R. Venkatesh, D. M. Phase, R. J. Choudhary","doi":"10.1063/5.0188767","DOIUrl":null,"url":null,"abstract":"Ferromagnetic insulators (FMIs) have widespread applications in microwave devices, magnetic tunneling junctions, and dissipationless electronic and quantum-spintronic devices. However, the sparsity of the available high-temperature FMIs has led to the quest for a robust and controllable insulating ferromagnetic state. Here, we present compelling evidence of modulation of the magnetic ground state in a SrCoO2.5 (SCO) thin film via strain engineering. The SCO system is an antiferromagnetic insulator with a Neel temperature, TN, of ∼550 K. Applying in-plane compressive strain, the SCO thin film reveals an insulating ferromagnetic state with an extraordinarily high Curie temperature, TC, of ∼750 K. The emerged ferromagnetic state is associated with charge-disproportionation (CD) and spin-state-disproportionation (SSD), involving high-spin Co2+ and low-spin Co4+ ions. The density functional theory calculation also produces an insulating ferromagnetic state in the strained SCO system, consistent with the CD and SSD, which is associated with the structural ordering in the system. Transpiring the insulating ferromagnetic state through modulating the electronic correlation parameters via strain engineering in the SCO thin film will have a significant impact in large areas of modern electronic and spintronic applications.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"1009 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature insulating ferromagnetic state in charge-disproportionated and spin-state-disproportionated strained SrCoO2.5 thin film\",\"authors\":\"Sourav Chowdhury, Anupam Jana, Ritu Rawat, Priyanka Yadav, Rajibul Islam, Fei Xue, A. K. Mandal, Sumit Sarkar, Rajan Mishra, R. Venkatesh, D. M. Phase, R. J. Choudhary\",\"doi\":\"10.1063/5.0188767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferromagnetic insulators (FMIs) have widespread applications in microwave devices, magnetic tunneling junctions, and dissipationless electronic and quantum-spintronic devices. However, the sparsity of the available high-temperature FMIs has led to the quest for a robust and controllable insulating ferromagnetic state. Here, we present compelling evidence of modulation of the magnetic ground state in a SrCoO2.5 (SCO) thin film via strain engineering. The SCO system is an antiferromagnetic insulator with a Neel temperature, TN, of ∼550 K. Applying in-plane compressive strain, the SCO thin film reveals an insulating ferromagnetic state with an extraordinarily high Curie temperature, TC, of ∼750 K. The emerged ferromagnetic state is associated with charge-disproportionation (CD) and spin-state-disproportionation (SSD), involving high-spin Co2+ and low-spin Co4+ ions. The density functional theory calculation also produces an insulating ferromagnetic state in the strained SCO system, consistent with the CD and SSD, which is associated with the structural ordering in the system. Transpiring the insulating ferromagnetic state through modulating the electronic correlation parameters via strain engineering in the SCO thin film will have a significant impact in large areas of modern electronic and spintronic applications.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"1009 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0188767\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0188767","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁磁绝缘体(FMIs)在微波设备、磁隧道结、无耗散电子设备和量子自旋电子设备中有着广泛的应用。然而,由于现有高温铁磁绝缘体的稀缺性,人们开始寻求一种稳健、可控的绝缘铁磁态。在这里,我们提出了通过应变工程调制 SrCoO2.5 (SCO) 薄膜磁基态的有力证据。SCO 系统是一种反铁磁绝缘体,其 Neel 温度(TN)为 ∼550 K。施加面内压应变后,SCO 薄膜显示出一种绝缘铁磁态,其居里温度(TC)超高,达到 ∼750 K。密度泛函理论计算还得出了应变 SCO 系统中的绝缘铁磁态,与 CD 和 SSD 相一致,这与系统中的结构有序性有关。通过应变工程调控 SCO 薄膜中的电子相关参数来激发绝缘铁磁态,将对现代电子和自旋电子应用领域产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-temperature insulating ferromagnetic state in charge-disproportionated and spin-state-disproportionated strained SrCoO2.5 thin film
Ferromagnetic insulators (FMIs) have widespread applications in microwave devices, magnetic tunneling junctions, and dissipationless electronic and quantum-spintronic devices. However, the sparsity of the available high-temperature FMIs has led to the quest for a robust and controllable insulating ferromagnetic state. Here, we present compelling evidence of modulation of the magnetic ground state in a SrCoO2.5 (SCO) thin film via strain engineering. The SCO system is an antiferromagnetic insulator with a Neel temperature, TN, of ∼550 K. Applying in-plane compressive strain, the SCO thin film reveals an insulating ferromagnetic state with an extraordinarily high Curie temperature, TC, of ∼750 K. The emerged ferromagnetic state is associated with charge-disproportionation (CD) and spin-state-disproportionation (SSD), involving high-spin Co2+ and low-spin Co4+ ions. The density functional theory calculation also produces an insulating ferromagnetic state in the strained SCO system, consistent with the CD and SSD, which is associated with the structural ordering in the system. Transpiring the insulating ferromagnetic state through modulating the electronic correlation parameters via strain engineering in the SCO thin film will have a significant impact in large areas of modern electronic and spintronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信