开发一种分析方法,通过原子力显微镜 (AFM) 分析研究商用加氢处理 CoMo-γAl2O3 催化剂的表面形态和粗糙度分析

IF 0.6 4区 化学 Q4 CHEMISTRY, APPLIED
Issam Mohammed Ali Shakir, Zaineb Falah Hassan
{"title":"开发一种分析方法,通过原子力显微镜 (AFM) 分析研究商用加氢处理 CoMo-γAl2O3 催化剂的表面形态和粗糙度分析","authors":"Issam Mohammed Ali Shakir, Zaineb Falah Hassan","doi":"10.1134/s1070427224010051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this work a fully analytical approach for atomic force microscopy (AFM) (non-contact mode) is proposed to determine surface roughness, morphology, and topography of two commercial CoMo-γAl<sub>2</sub>O<sub>3</sub> catalysts (Ketjenfine 124-3E and Ketjenfine 165) that are used in hydrotreating process (HTP) in Iraqi refineries. All parameters of the AFM image (amplitude, hybrid and spatial parameters) were discussed with a new insight and a detailed description of how the nano-particles were built in and distributed in hypothetical multi layers based on mathematical calculations of volume and surface area based on regarding that each individual grain has a sphere-like shape of a specific diameter. A clear relationship between grain number and average diameter was noticed, due to the increase in grain average diameter of KF124-3E (143.47 nm) comparing to that of KF165 (120.21) leads to make the density of grain distribution for the latter is greater than that of KF124. Surface area of total grains of Ketjenfine 124-3E and Ketjenfine 165 were 8 919 303.275 and 8 031 267.809 nm<sup>2</sup>, respectively. Higher roughness average (<i>S</i><sub>a</sub>) value of catalyst KF165 (18.4 nm) means the reactants will have more opportunity for complete reaction. Root mean square (<i>S</i><sub>q</sub>) values were 8.16 nm for KF124-3E and 21.5 nm for KF165 indicating that KF165 is rougher than KF124-3E. Surface skewness of KF124-3E and KF165 were 0.00031, –0.168, respectively. For both hydrotreating catalysts the surface kurtosis value (<i>S</i><sub>ku</sub>) was about ≤2.0 and the distribution curves is Platykurtic. Root means square slope (<i>S</i><sub>dq</sub>) for KF165 catalyst is 1.31 nm<sup>–1</sup>, which is approximately four times greater than that of KF124-3E (0.35 nm<sup>–1</sup>) indicating that KF165 has rougher surface profile.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":"41 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Analytical Approach to Study the Surface Morphology and Roughness Analysis of Commercial Hydrotreating CoMo-γAl2O3 Catalysts via Atomic Force Microscopy (AFM) Analysis\",\"authors\":\"Issam Mohammed Ali Shakir, Zaineb Falah Hassan\",\"doi\":\"10.1134/s1070427224010051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this work a fully analytical approach for atomic force microscopy (AFM) (non-contact mode) is proposed to determine surface roughness, morphology, and topography of two commercial CoMo-γAl<sub>2</sub>O<sub>3</sub> catalysts (Ketjenfine 124-3E and Ketjenfine 165) that are used in hydrotreating process (HTP) in Iraqi refineries. All parameters of the AFM image (amplitude, hybrid and spatial parameters) were discussed with a new insight and a detailed description of how the nano-particles were built in and distributed in hypothetical multi layers based on mathematical calculations of volume and surface area based on regarding that each individual grain has a sphere-like shape of a specific diameter. A clear relationship between grain number and average diameter was noticed, due to the increase in grain average diameter of KF124-3E (143.47 nm) comparing to that of KF165 (120.21) leads to make the density of grain distribution for the latter is greater than that of KF124. Surface area of total grains of Ketjenfine 124-3E and Ketjenfine 165 were 8 919 303.275 and 8 031 267.809 nm<sup>2</sup>, respectively. Higher roughness average (<i>S</i><sub>a</sub>) value of catalyst KF165 (18.4 nm) means the reactants will have more opportunity for complete reaction. Root mean square (<i>S</i><sub>q</sub>) values were 8.16 nm for KF124-3E and 21.5 nm for KF165 indicating that KF165 is rougher than KF124-3E. Surface skewness of KF124-3E and KF165 were 0.00031, –0.168, respectively. For both hydrotreating catalysts the surface kurtosis value (<i>S</i><sub>ku</sub>) was about ≤2.0 and the distribution curves is Platykurtic. Root means square slope (<i>S</i><sub>dq</sub>) for KF165 catalyst is 1.31 nm<sup>–1</sup>, which is approximately four times greater than that of KF124-3E (0.35 nm<sup>–1</sup>) indicating that KF165 has rougher surface profile.</p>\",\"PeriodicalId\":757,\"journal\":{\"name\":\"Russian Journal of Applied Chemistry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s1070427224010051\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1070427224010051","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究提出了一种原子力显微镜(AFM)(非接触模式)完全分析方法,用于确定伊拉克炼油厂加氢处理工艺(HTP)中使用的两种商用 CoMo-γAl2O3 催化剂(Ketjenfine 124-3E 和 Ketjenfine 165)的表面粗糙度、形态和形貌。对原子力显微镜图像的所有参数(振幅、混合参数和空间参数)进行了讨论,并对纳米颗粒如何在假设的多层中形成和分布进行了详细描述,这些假设的多层是基于体积和表面积的数学计算,即每个晶粒都具有特定直径的球状形状。由于 KF124-3E 的晶粒平均直径(143.47 纳米)比 KF165(120.21 纳米)大,因此后者的晶粒分布密度比 KF124 大。Ketjenfine 124-3E 和 Ketjenfine 165 的总晶粒表面积分别为 8 919 303.275 和 8 031 267.809 nm2。催化剂 KF165 较高的平均粗糙度 (Sa) 值(18.4 nm)意味着反应物有更多的机会完全反应。KF124-3E 的均方根 (Sq) 值为 8.16 nm,KF165 为 21.5 nm,表明 KF165 比 KF124-3E 更粗糙。KF124-3E 和 KF165 的表面偏度分别为 0.00031 和 -0.168。两种加氢处理催化剂的表面峰度值(Sku)均≤2.0,分布曲线呈扁平桔皮状。KF165 催化剂的均方根斜率(Sdq)为 1.31 nm-1,约为 KF124-3E 的四倍(0.35 nm-1),表明 KF165 的表面粗糙度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of an Analytical Approach to Study the Surface Morphology and Roughness Analysis of Commercial Hydrotreating CoMo-γAl2O3 Catalysts via Atomic Force Microscopy (AFM) Analysis

Development of an Analytical Approach to Study the Surface Morphology and Roughness Analysis of Commercial Hydrotreating CoMo-γAl2O3 Catalysts via Atomic Force Microscopy (AFM) Analysis

Abstract

In this work a fully analytical approach for atomic force microscopy (AFM) (non-contact mode) is proposed to determine surface roughness, morphology, and topography of two commercial CoMo-γAl2O3 catalysts (Ketjenfine 124-3E and Ketjenfine 165) that are used in hydrotreating process (HTP) in Iraqi refineries. All parameters of the AFM image (amplitude, hybrid and spatial parameters) were discussed with a new insight and a detailed description of how the nano-particles were built in and distributed in hypothetical multi layers based on mathematical calculations of volume and surface area based on regarding that each individual grain has a sphere-like shape of a specific diameter. A clear relationship between grain number and average diameter was noticed, due to the increase in grain average diameter of KF124-3E (143.47 nm) comparing to that of KF165 (120.21) leads to make the density of grain distribution for the latter is greater than that of KF124. Surface area of total grains of Ketjenfine 124-3E and Ketjenfine 165 were 8 919 303.275 and 8 031 267.809 nm2, respectively. Higher roughness average (Sa) value of catalyst KF165 (18.4 nm) means the reactants will have more opportunity for complete reaction. Root mean square (Sq) values were 8.16 nm for KF124-3E and 21.5 nm for KF165 indicating that KF165 is rougher than KF124-3E. Surface skewness of KF124-3E and KF165 were 0.00031, –0.168, respectively. For both hydrotreating catalysts the surface kurtosis value (Sku) was about ≤2.0 and the distribution curves is Platykurtic. Root means square slope (Sdq) for KF165 catalyst is 1.31 nm–1, which is approximately four times greater than that of KF124-3E (0.35 nm–1) indicating that KF165 has rougher surface profile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
63
审稿时长
2-4 weeks
期刊介绍: Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信