代数同调类

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Juliusz Banecki
{"title":"代数同调类","authors":"Juliusz Banecki","doi":"10.1016/j.matpur.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>We prove several positive results regarding representation of homotopy classes of spheres and algebraic groups by regular mappings. Most importantly we show that every mapping from a sphere to an orthogonal or a unitary group is homotopic to a regular one. Furthermore we prove that algebraic homotopy classes of spheres form a subgroup of the homotopy group, and that a similar result holds also for cohomotopy groups of arbitrary varieties.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000588/pdfft?md5=db876b33b1eccaf152b3741e38a53afa&pid=1-s2.0-S0021782424000588-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Algebraic homotopy classes\",\"authors\":\"Juliusz Banecki\",\"doi\":\"10.1016/j.matpur.2024.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove several positive results regarding representation of homotopy classes of spheres and algebraic groups by regular mappings. Most importantly we show that every mapping from a sphere to an orthogonal or a unitary group is homotopic to a regular one. Furthermore we prove that algebraic homotopy classes of spheres form a subgroup of the homotopy group, and that a similar result holds also for cohomotopy groups of arbitrary varieties.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000588/pdfft?md5=db876b33b1eccaf152b3741e38a53afa&pid=1-s2.0-S0021782424000588-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们用正则映射证明了一些关于球和代数群同调类表示的积极结果。最重要的是,我们证明了球面在正交或单元群中的每个应用都与正则应用同构。此外,我们还证明了球的代数同调类构成同调群的一个子群,而且类似的结果也适用于任意品种的同调群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic homotopy classes

We prove several positive results regarding representation of homotopy classes of spheres and algebraic groups by regular mappings. Most importantly we show that every mapping from a sphere to an orthogonal or a unitary group is homotopic to a regular one. Furthermore we prove that algebraic homotopy classes of spheres form a subgroup of the homotopy group, and that a similar result holds also for cohomotopy groups of arbitrary varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信