确定性和随机周期结构中亥姆霍兹方程的稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gang Bao , Yiwen Lin , Xiang Xu
{"title":"确定性和随机周期结构中亥姆霍兹方程的稳定性","authors":"Gang Bao ,&nbsp;Yiwen Lin ,&nbsp;Xiang Xu","doi":"10.1016/j.matpur.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><p>Stability results for the Helmholtz equations in both deterministic and random periodic structures are proved in this paper. Under the assumption of excluding resonances, by a variational method and Fourier analysis in the energy space, the stability estimate for the Helmholtz equation in a deterministic periodic structure is established. For the stochastic case, by introducing a variable transform, the variational formulation of the scattering problem in a random domain is reduced to that in a definite domain with random medium. Combining the stability result for the deterministic case with regularity and stochastic regularity of the scattering surface, Pettis measurability theorem and Bochner's Theorem further yield the stability result for the scattering problem by random periodic structures. Both stability estimates are explicit with respect to the wavenumber.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability for the Helmholtz equation in deterministic and random periodic structures\",\"authors\":\"Gang Bao ,&nbsp;Yiwen Lin ,&nbsp;Xiang Xu\",\"doi\":\"10.1016/j.matpur.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stability results for the Helmholtz equations in both deterministic and random periodic structures are proved in this paper. Under the assumption of excluding resonances, by a variational method and Fourier analysis in the energy space, the stability estimate for the Helmholtz equation in a deterministic periodic structure is established. For the stochastic case, by introducing a variable transform, the variational formulation of the scattering problem in a random domain is reduced to that in a definite domain with random medium. Combining the stability result for the deterministic case with regularity and stochastic regularity of the scattering surface, Pettis measurability theorem and Bochner's Theorem further yield the stability result for the scattering problem by random periodic structures. Both stability estimates are explicit with respect to the wavenumber.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文论证了确定性周期结构和随机周期结构中亥姆霍兹方程的稳定性结果。在共振排斥的假设下,利用变分法和能量空间的傅里叶分析,建立了确定性周期结构中亥姆霍兹方程的稳定性估计。对于随机情况,通过引入变量变换,将随机域中扩散问题的变分公式简化为随机介质定义域中的扩散问题。结合去明情况下的稳定性结果与散射面的正则性和随机正则性,佩蒂斯可测性定理和博克纳积分定理进一步提供了随机周期结构散射问题的稳定性结果。这两个稳定性估计都是关于波数的显式估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability for the Helmholtz equation in deterministic and random periodic structures

Stability results for the Helmholtz equations in both deterministic and random periodic structures are proved in this paper. Under the assumption of excluding resonances, by a variational method and Fourier analysis in the energy space, the stability estimate for the Helmholtz equation in a deterministic periodic structure is established. For the stochastic case, by introducing a variable transform, the variational formulation of the scattering problem in a random domain is reduced to that in a definite domain with random medium. Combining the stability result for the deterministic case with regularity and stochastic regularity of the scattering surface, Pettis measurability theorem and Bochner's Theorem further yield the stability result for the scattering problem by random periodic structures. Both stability estimates are explicit with respect to the wavenumber.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信