设计纳米纤维高功率靶的贝叶斯优化方案

W. AsztalosIllinois Institute of Technology, Y. TorunIllinois Institute of Technology, S. BidharFermi National Accelerator Laboratory, F. PellemoineFermi National Accelerator Laboratory, P. RathIndian Institute of Technology Bhubaneswar
{"title":"设计纳米纤维高功率靶的贝叶斯优化方案","authors":"W. AsztalosIllinois Institute of Technology, Y. TorunIllinois Institute of Technology, S. BidharFermi National Accelerator Laboratory, F. PellemoineFermi National Accelerator Laboratory, P. RathIndian Institute of Technology Bhubaneswar","doi":"arxiv-2405.19490","DOIUrl":null,"url":null,"abstract":"High Power Targetry (HPT) R&D is critical in the context of increasing beam\nintensity and energy for next generation accelerators. Many target concepts and\nnovel materials are being developed and tested for their ability to withstand\nextreme beam environments; the HPT R&D Group at Fermilab is developing an\nelectrospun nanofiber material for this purpose. The performance of these\nnanofiber targets is sensitive to their construction parameters, such as the\npacking density of the fibers. Lowering the density improves the survival of\nthe target, but reduces the secondary particle yield. Optimizing the lifetime\nand production efficiency of the target poses an interesting design problem,\nand in this paper we study the applicability of Bayesian optimization to its\nsolution. We first describe how to encode the nanofiber target design problem\nas the optimization of an objective function, and how to evaluate that function\nwith computer simulations. We then explain the optimization loop setup.\nThereafter, we present the optimal design parameters suggested by the\nalgorithm, and close with discussions of limitations and future refinements.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian optimization scheme for the design of a nanofibrous high power target\",\"authors\":\"W. AsztalosIllinois Institute of Technology, Y. TorunIllinois Institute of Technology, S. BidharFermi National Accelerator Laboratory, F. PellemoineFermi National Accelerator Laboratory, P. RathIndian Institute of Technology Bhubaneswar\",\"doi\":\"arxiv-2405.19490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Power Targetry (HPT) R&D is critical in the context of increasing beam\\nintensity and energy for next generation accelerators. Many target concepts and\\nnovel materials are being developed and tested for their ability to withstand\\nextreme beam environments; the HPT R&D Group at Fermilab is developing an\\nelectrospun nanofiber material for this purpose. The performance of these\\nnanofiber targets is sensitive to their construction parameters, such as the\\npacking density of the fibers. Lowering the density improves the survival of\\nthe target, but reduces the secondary particle yield. Optimizing the lifetime\\nand production efficiency of the target poses an interesting design problem,\\nand in this paper we study the applicability of Bayesian optimization to its\\nsolution. We first describe how to encode the nanofiber target design problem\\nas the optimization of an objective function, and how to evaluate that function\\nwith computer simulations. We then explain the optimization loop setup.\\nThereafter, we present the optimal design parameters suggested by the\\nalgorithm, and close with discussions of limitations and future refinements.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高功率靶材(HPT)研发对于提高下一代加速器的光束强度和能量至关重要。目前正在开发许多靶概念和新型材料,并对其承受极端光束环境的能力进行测试;费米实验室的 HPT 研发小组正在为此开发一种电纺纳米纤维材料。纳米纤维靶的性能对其结构参数非常敏感,例如纤维的包装密度。降低密度可以提高靶的存活率,但会降低二次粒子的产量。优化靶材的寿命和生产效率提出了一个有趣的设计问题,在本文中,我们研究了贝叶斯优化法在解决这一问题中的适用性。我们首先介绍了如何将纳米纤维靶设计问题编码为目标函数的优化,以及如何通过计算机模拟来评估该函数。然后,我们解释了优化循环的设置。之后,我们提出了该算法建议的最佳设计参数,最后讨论了局限性和未来的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization scheme for the design of a nanofibrous high power target
High Power Targetry (HPT) R&D is critical in the context of increasing beam intensity and energy for next generation accelerators. Many target concepts and novel materials are being developed and tested for their ability to withstand extreme beam environments; the HPT R&D Group at Fermilab is developing an electrospun nanofiber material for this purpose. The performance of these nanofiber targets is sensitive to their construction parameters, such as the packing density of the fibers. Lowering the density improves the survival of the target, but reduces the secondary particle yield. Optimizing the lifetime and production efficiency of the target poses an interesting design problem, and in this paper we study the applicability of Bayesian optimization to its solution. We first describe how to encode the nanofiber target design problem as the optimization of an objective function, and how to evaluate that function with computer simulations. We then explain the optimization loop setup. Thereafter, we present the optimal design parameters suggested by the algorithm, and close with discussions of limitations and future refinements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信